首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   5篇
  2022年   1篇
  2021年   4篇
  2019年   2篇
  2017年   2篇
  2016年   8篇
  2015年   5篇
  2014年   8篇
  2013年   9篇
  2012年   10篇
  2011年   21篇
  2010年   7篇
  2009年   6篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有128条查询结果,搜索用时 31 毫秒
91.
92.
Capillary electrophoresis coupled with laser-induced fluorescence was used for the characterization of quantum dots and their conjugates to biological molecules. The CE-LIF was laboratory-built and capable of injection (hydrodynamic and electrokinetic) from sample volumes as low as 4 μL via the use of a modified micro-fluidic chip platform. Commercially available quantum dots were bioconjugated to proteins and immunoglobulins through the use of established techniques (non-selective and selective). Non-selective techniques involved the use of EDCHCl/sulfo-NHS for the conjugation of BSA and myoglobin to carboxylic acid-functionalized quantum dots. Selective techniques involved 1) the use of heterobifunctional crosslinker, sulfo-SMCC, for the conjugation of partially reduced IgG to amine-functionalized quantum dots, and 2) the conjugation of periodate-oxidized IgGs to hydrazide-functionalized quantum dots. The migration times of these conjugates were determined in comparison to their non-conjugated QD relatives based upon their charge-to-size ratio values. The performance of capillary electrophoresis in characterizing immunoconjugates of quantum dot-labeled IgGs was also evaluated. Together, both QDs and CE-LIF can be applied as a sensitive technique for the detection of biological molecules. This work will contribute to the advancements in applying nanotechnology for molecular diagnosis in medical field.  相似文献   
93.

Background

Caesarean section before labor or before ruptured membranes ("elective caesarean section", or ECS) has been introduced as an intervention for preventing mother-to-child transmission (MTCT) of hepatitis B virus (HBV). Currently, no evidence that ECS versus vaginal delivery reduces the rate of MTCT of HBV has been generally provided. The aim of this review is to assess, from randomized control trails (RCTs), the efficacy and safety of ECS versus vaginal delivery in preventing mother-to-child HBV transmission.

Results

We searched Cochrane Pregnancy and Childbirth Group's Trials Register (January, 2008), the Cochrane Central Register of Controlled Trials (the Cochrane Library 2008, issue 1), PubMed (1950 to 2008), EMBASE (1974 to 2008), Chinese Biomedical Literature Database (CBM) (1975 to 2008), China National Knowledge Infrastructure (CNKI) (1979 to 2008), VIP database (1989 to 2008), as well as reference lists of relevant studies. Finally, four randomized trails involving 789 people were included. Based on meta-analysis, There was strong evidence that ECS versus vaginal delivery could effectively reduce the rate of MTCT of HBV (ECS: 10.5%; vaginal delivery: 28.0%). The difference between the two groups (ECS versus vaginal delivery) had statistical significance (RR 0.41, 95% CI 0.28 to 0.60, P < 0.000001). No data regarding maternal morbidity or infant morbidity according to mode of delivery were available.

Conclusion

ECS appears to be effective in preventing MTCT of HBV and no postpartum morbidity (PPM) was reported. However, the conclusions of this review must be considered with great caution due to high risk of bias in each included study (graded C).  相似文献   
94.
The functional feeding groups and diversity of macroinvertebrate communities associated with duckweed mats in the New Years River (two sites) and Bloukrans River (two sites), Eastern Cape province, South Africa, were assessed. Duckweed (Lemnaceae) is a ubiquitous family of floating macrophytes. A total of 41 macroinvertebrate families were collected monthly over a six-month period from February to July 2014. Duckweed biomass in both rivers was highly variable both temporally and spatially. The majority of identified macroinvertebrate taxa were predators and detritivores, with a small percentage of herbivores. An average of approximately 26% of the macroinvertebrate taxa found were from families that include species from more than one functional feeding group. Although overall measures of diversity and ecosystem health (Fisher’s α and Simpson’s index) remained constant over time in the New Years River, significant differences in macroinvertebrate community structure were seen between sites and months on both rivers, with dissimilarity being driven by a larger number of species in the New Years River. This high variability within macroinvertebrate assemblages probably reflects a combination of heterogeneous duckweed distribution, variation in physico-chemistry, opportunistic behaviours of macroinvertebrate predators and/or successional colonisation of duckweed mats.  相似文献   
95.
96.
97.
The bacterial pathogen Group A Streptococcus (GAS) colonizes epithelial and mucosal surfaces and can cause a broad spectrum of human disease. Through the secreted plasminogen activator streptokinase (Ska), GAS activates human plasminogen into plasmin and binds it to the bacterial surface. The resulting surface plasmin protease activity has been proposed to play a role in disrupting tissue barriers, promoting invasive spread of the bacterium. We investigated whether this surface protease activity could aid the immune evasion role through degradation of the key innate antimicrobial peptide LL-37, the human cathelicidin. Cleavage products of plasmin-degraded LL-37 were analyzed by matrix-assisted laser desorption ionization mass spectrometry. Ska-deficient GAS strains were generated by targeted allelic exchange mutagenesis and confirmed to lack surface plasmin activity after growth in human plasma or media supplemented with plasminogen and fibrinogen. Loss of surface plasmin activity left GAS unable to efficiently degrade LL-37 and increased bacterial susceptibility to killing by the antimicrobial peptide. When mice infected with GAS were simultaneously treated with the plasmin inhibitor aprotinin, a significant reduction in the size of necrotic skin lesions was observed. Together these data reveal a novel immune evasion strategy of the human pathogen: co-opting the activity of a host protease to evade peptide-based innate host defenses.  相似文献   
98.
Sacoglossans are characterized by the ability to sequester functional chloroplasts from their algal diet through a process called kleptoplasty, enabling them to photosynthesize. The bacterial diversity associated with sacoglossans is not well understood. In this study, we coupled traditional cultivation-based methods with 454 pyrosequencing to examine the bacterial communities of the chemically defended Hawaiian sacoglossan Elysia rufescens and its secreted mucus. E. rufescens contains a defense molecule, kahalalide F, that is possibly of bacterial origin and is of interest because of its antifungal and anticancer properties. Our results showed that there is a diverse bacterial assemblage associated with E. rufescens and its mucus, with secreted mucus harboring higher bacterial richness than entire-E. rufescens samples. The most-abundant bacterial groups affiliated with E. rufescens and its mucus are Mycoplasma spp. and Vibrio spp., respectively. Our analyses revealed that the Vibrio spp. that were highly represented in the cultivable assemblage were also abundant in the culture-independent community. Epifluorescence microscopy and matrix-assisted laser desorption–ionization mass spectrometry (MALDI-MS) were utilized to detect the chemical defense molecule kahalalide F on a longitudinal section of the sacoglossan.  相似文献   
99.
Although competition, niche partitioning, and spatial isolation have been used to describe the ecology and evolution of macro-organisms, it is less clear to what extent these principles account for the extraordinary levels of bacterial diversity observed in nature. Ecological interactions among bacteria are particularly challenging to address due to methodological limitations and uncertainties over how to recognize fundamental units of diversity and link them to the functional traits and evolutionary processes that led to their divergence. Here we show that two closely related marine actinomycete species can be differentiated based on competitive strategies. Using a direct challenge assay to investigate inhibitory interactions with members of the bacterial community, we observed a temporal difference in the onset of inhibition. The majority of inhibitory activity exhibited by Salinispora arenicola occurred early in its growth cycle and was linked to antibiotic production. In contrast, most inhibition by Salinispora tropica occurred later in the growth cycle and was more commonly linked to nutrient depletion or other sources. Comparative genomics support these differences, with S. arenicola containing nearly twice the number of secondary metabolite biosynthetic gene clusters as S. tropica, indicating a greater potential for secondary metabolite production. In contrast, S. tropica is enriched in gene clusters associated with the acquisition of growth-limiting nutrients such as iron. Coupled with differences in growth rates, the results reveal that S. arenicola uses interference competition at the expense of growth, whereas S. tropica preferentially employs a strategy of exploitation competition. The results support the ecological divergence of two co-occurring and closely related species of marine bacteria by providing evidence they have evolved fundamentally different strategies to compete in marine sediments.  相似文献   
100.
Entamoeba histolytica cysteine proteinases (EhCPs) play a key role in disrupting the colonic epithelial barrier and the innate host immune response during invasion of E. histolytica, the protozoan cause of human amebiasis. EhCPs are encoded by 50 genes, of which ehcp4 (ehcp-a4) is the most up-regulated during invasion and colonization in a mouse cecal model of amebiasis. Up-regulation of ehcp4 in vivo correlated with our finding that co-culture of E. histolytica trophozoites with mucin-producing T84 cells increased ehcp4 expression up to 6-fold. We have expressed recombinant EhCP4, which was autocatalytically activated at acidic pH but had highest proteolytic activity at neutral pH. In contrast to the other amebic cysteine proteinases characterized so far, which have a preference for arginine in the P2 position, EhCP4 displayed a unique preference for valine and isoleucine at P2. This preference was confirmed by homology modeling, which revealed a shallow, hydrophobic S2 pocket. Endogenous EhCP4 localized to cytoplasmic vesicles, the nuclear region, and perinuclear endoplasmic reticulum (ER). Following co-culture with colonic cells, EhCP4 appeared in acidic vesicles and was released extracellularly. A specific vinyl sulfone inhibitor, WRR605, synthesized based on the substrate specificity of EhCP4, inhibited the recombinant enzyme in vitro and significantly reduced parasite burden and inflammation in the mouse cecal model. The unique expression pattern, localization, and biochemical properties of EhCP4 could be exploited as a potential target for drug design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号