首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6422篇
  免费   716篇
  国内免费   6篇
  7144篇
  2021年   78篇
  2018年   98篇
  2017年   56篇
  2016年   110篇
  2015年   167篇
  2014年   196篇
  2013年   266篇
  2012年   308篇
  2011年   288篇
  2010年   182篇
  2009年   165篇
  2008年   249篇
  2007年   285篇
  2006年   249篇
  2005年   261篇
  2004年   243篇
  2003年   221篇
  2002年   222篇
  2001年   154篇
  2000年   191篇
  1999年   154篇
  1998年   95篇
  1997年   111篇
  1996年   76篇
  1995年   84篇
  1994年   64篇
  1993年   57篇
  1992年   90篇
  1991年   106篇
  1990年   105篇
  1989年   101篇
  1988年   95篇
  1987年   87篇
  1986年   89篇
  1985年   90篇
  1984年   82篇
  1983年   86篇
  1982年   67篇
  1981年   86篇
  1980年   53篇
  1979年   65篇
  1978年   63篇
  1977年   62篇
  1976年   59篇
  1975年   58篇
  1974年   59篇
  1973年   65篇
  1971年   53篇
  1969年   58篇
  1968年   58篇
排序方式: 共有7144条查询结果,搜索用时 8 毫秒
91.
92.
Summary Recent advances in understanding the molecular mechanisms of membrane traffic to and through the Golgi apparatus have been predicated in large measure on the use of permeabilized animal cells, and on completely cell-free systems. These systems have included those addressing inter-Golgi apparatus membrane traffic, endoplasmic reticulum to Golgi apparatus traffic, and endocytotic events. Development of cell-free systems depends on the use of isolated fractions. Specificity is often achieved by using a compartment-specific assay so that the fractions employed can be very crude. More recently cell-free systems also have evolved which employ highly purified and well-characterized cell fractions. The latter may be utilized in the absence of a compartment-specific assay but may require employment of compartment-specific assays for validation. Central to development of cell-free systems for membrane analysis has been the availability of isolated Golgi apparatus, first from plants and later from animal tissues and cells. A major advantage of cell-free systems is that they are most clearly amenable to the investigation of molecular mechanisms of membrane trafficking.Dedicated to Hilton H. Mollenhauer on the occasion of his retirement  相似文献   
93.
94.
95.
96.
Heteronuclear NMR relaxation measurements and hydrogen exchange data have been used to characterize protein dynamics in the presence or absence of stabilizing solutes from hyperthermophiles. Rubredoxin from Desulfovibrio gigas was selected as a model protein and the effect of diglycerol phosphate on its dynamic behaviour was studied. The presence of 100 mM diglycerol phosphate induces a fourfold increase in the half-life for thermal denaturation of D. gigas rubredoxin. A model-free analysis of the protein backbone relaxation parameters shows an average increase of generalized order parameters of 0.015 reflecting a small overall reduction in mobility of fast-scale motions. Hydrogen exchange data acquired over a temperature span of 20 degrees C yielded thermodynamic parameters for the structural opening reactions that allow for the exchange. This shows that the closed form of the protein is stabilized by an additional 1.6 kJ x mol(-1) in the presence of the solute. The results seem to indicate that the stabilizing effect is due mainly to a reduction in mobility of the slower, larger-scale motions within the protein structure with an associated increase in the enthalpy of interactions.  相似文献   
97.
98.
The cowpox virus (CPV) SPI-3 gene (open reading frame K2L in vaccinia virus) is one of three orthopoxvirus genes whose products are members of the serpin (serine proteinase inhibitor) superfamily. The CPV SPI-3 gene, when overexpressed by using the vaccinia virus/T7 expression system, synthesized two proteins of 50 and 48 kDa. Treatment with the N glycosylation inhibitor tunicamycin converted the two SPI-3 proteins to a single 40-kDa protein, close to the size of 42 kDa predicted from the DNA sequence, suggesting that the SPI-3 protein, unlike the other two orthopoxvirus serpins, is a glycoprotein. Immunoblotting with an anti-SPI-3 antibody showed that the SPI-3 protein is synthesized early in infection prior to DNA replication. SPI-3 inhibits cell-cell fusion during infections with both CPV and vaccinia virus. A transfection assay was devised to test engineered mutants of SPI-3 for the ability to inhibit fusion. Two mutants with C-terminal deletions of 156 and 70 amino acids were completely inactive in fusion inhibition. Site-directed mutations were constructed near the C terminus of SPI-3, in or near the predicted reactive-site loop which is conserved in inhibitory serpins. Substitutions within the loop at the P1 to P1' positions and P5 to P5' positions, inclusive, did not result in any loss of activity, nor did changes at the P17 to P10 residues in the stalk of the reactive loop. Therefore, SPI-3 does not appear to control cell fusion by acting as a serine proteinase inhibitor.  相似文献   
99.
The design, construction, and characterization of a prototype-regenerable glucose biosensor based on the reversible immobilization of glucose oxidase (GOx) using cellulose binding domain (CBD) technology is described. GOx, chemically linked to CBD, is immobilized by binding to a cellulose matrix on the sensor-indicating electode. Enzyme immobilization can be reversed by perfusing the cellulose matrix with a suitable eluting solution. An autocavable sensor membrane system is employed which is shown to be practical for use in real microbial fermentations. The prototype glucose biosensor was used without failure or deterioration during fed-batch fermentations of Escherichia coli reaching a maximum cell density of 85 g (dry weight)/L. Medium glucose concentration based on sensor output correlated closely with off-line glucose analysis and was controlled manually at 0.44 +/- 0.2 g/L for 2 h based on glucose sensor output. The sensor enzyme component could be eluted and replaced without interrupting the fermentation. To our knowledge, no other in situ biosensor has been used for such an extended period of time in such a high-cell-density fermentation. (c) 1995 John Wiley & Sons, Inc.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号