首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1441篇
  免费   200篇
  2021年   20篇
  2020年   12篇
  2018年   16篇
  2016年   23篇
  2015年   43篇
  2014年   54篇
  2013年   65篇
  2012年   75篇
  2011年   81篇
  2010年   49篇
  2009年   46篇
  2008年   61篇
  2007年   61篇
  2006年   53篇
  2005年   61篇
  2004年   62篇
  2003年   53篇
  2002年   63篇
  2001年   14篇
  2000年   16篇
  1999年   18篇
  1998年   27篇
  1997年   19篇
  1996年   13篇
  1995年   14篇
  1994年   19篇
  1992年   16篇
  1991年   19篇
  1990年   12篇
  1989年   15篇
  1988年   16篇
  1987年   16篇
  1986年   13篇
  1984年   12篇
  1983年   18篇
  1982年   17篇
  1981年   25篇
  1980年   19篇
  1978年   12篇
  1977年   15篇
  1976年   17篇
  1974年   15篇
  1973年   16篇
  1971年   14篇
  1970年   13篇
  1969年   15篇
  1968年   18篇
  1967年   12篇
  1964年   16篇
  1963年   15篇
排序方式: 共有1641条查询结果,搜索用时 31 毫秒
81.
Coinheritance of germline mutation in cyclin‐dependent kinase inhibitor 2A (CDKN2A) and loss‐of‐function (LOF) melanocortin 1 receptor (MC1R) variants is clinically associated with exaggerated risk for melanoma. To understand the combined impact of these mutations, we established and tested primary human melanocyte cultures from different CDKN2A mutation carriers, expressing either wild‐type MC1R or MC1RLOF variant(s). These cultures expressed the CDKN2A product p16 (INK4A) and functional MC1R. Except for 32ins24 mutant melanocytes, the remaining cultures showed no detectable aberrations in proliferation or capacity for replicative senescence. Additionally, the latter cultures responded normally to ultraviolet radiation (UV) by cell cycle arrest, JNK, p38, and p53 activation, hydrogen peroxide generation, and repair of DNA photoproducts. We propose that malignant transformation of melanocytes expressing CDKN2A mutation and MC1RLOF allele(s) requires acquisition of somatic mutations facilitated by MC1R genotype or aberrant microenvironment due to CDKN2A mutation in keratinocytes and fibroblasts.  相似文献   
82.
83.
Microarray technology was utilized to isolate disease-specific changes in gene expression by sampling across inferior parietal lobes of patients suffering from late onset AD or non-AD-associated dementia and non-demented controls. Primary focus was placed on understanding how inflammation plays a role in AD pathogenesis. Gene ontology analysis revealed that the most differentially expressed genes related to nervous system development and function and neurological disease followed by genes involved in inflammation and immunological signaling. Pathway analysis also implicated a role for chemokines and their receptors, specifically CXCR4 and CCR3, in AD. Immunohistological analysis revealed that these chemokine receptors are upregulated in AD patients. Western analysis demonstrated an increased activation of PKC, a downstream mediator of chemokine receptor signaling, in the majority of AD patients. A very specific cohort of genes related to amyloid beta accumulation and clearance were found to be significantly altered in AD. The most significantly downregulated gene in this data set was the endothelin converting enzyme 2 (ECE2), implicated in amyloid beta clearance. These data were subsequently confirmed by real-time PCR and Western blot analysis. Together, these findings open up new avenues of investigation and possible therapeutic strategies targeting inflammation and amyloid clearance in AD patients.  相似文献   
84.
85.
Wong  Dorothy  Plumb  James  Talab  Hosamiddine  Kurdi  Mouhamad  Pokhrel  Keshav  Oelkers  Peter 《Mycopathologia》2019,184(2):213-226
Mycopathologia - Perturbing ergosterol synthesis has been previously shown to reduce the virulence of Candida albicans. We tested the hypothesis that further altering cell membrane composition by...  相似文献   
86.
The present study investigates the effect of anthocyanin (ACN), phenolic acid (PA) fractions, and their combination (ACNs:PAs) from wild blueberry powder (Vaccinum angustifolium) on the speed of endothelial cell migration, gene expression, and protein levels of RAC1 and RHOA associated with acute exposure to different concentrations of ACNs and PAs. Time-lapse videos were analyzed and endothelial cell speed was calculated. Treatment with ACNs at 60 μg/mL inhibited endothelial cell migration rate ( P ≤ 0.05) while treatment with PAs at 0.002 μg/mL ( P ≤ 0.0001), 60 μg/mL ( P ≤ 0.0001), and 120 μg/mL ( P ≤ 0.01) significantly increased endothelial cell migration rate compared with control. Moreover, exposure of HUVECs to ACNs:PAs at 8:8 μg/mL ( P ≤ 0.05) and 60:60 μg/mL increased ( P ≤ 0.001) endothelial cell migration. Gene expression of RAC1 and RHOA significantly increased 2 hours after exposure with all treatments. No effect of the above fractions was observed on the protein levels of RAC1 and RHOA. Findings suggest that endothelial cell migration is differentially modulated based on the type of blueberry extract (ACN or PA fraction) and is concentration-dependent. Future studies should determine the mechanism of the differential action of the above fractions on endothelial cell migration.  相似文献   
87.
The components of the insulin-like growth factor (IGF) axis and their roles in regulating proliferation and differentiation of the human colon adenocarcinoma cell line, Caco-2, have been investigated. Caco-2 cells proliferated in serum-free medium at 75% the rate observed in medium containing 10% fetal bovine serum. IGF-I (10 nM) increased Caco-2 cell growth in serum-free medium, but not to the rate seen with serum. Multiple IGF-II mRNA species were produced by Caco-2 cells, but IGF-I mRNA was undetectable. Secretion of radioimmunoassayable IGF-II corresponded with steady-state levels of IGF-II mRNA, neither of which was observed to change markedly over the course of 16 days of Caco-2 cell differentiation. Levels of sucrase-isomaltase mRNA, a marker for enterocytic differentiation, increased 12-fold between days 5 and 16 of culture. Northern blotting of total RNA and ligand blot and immunoblot analyses of serum-free conditioned medium revealed that Caco-2 cells produce several IGF binding proteins (IGFBPs), including IGFBP-2, -3, and -4, as well as a 31,000 M, species that was not identified. The pattern of IGFBP secretion changed dramatically during Caco-2 cell differentiation: IGFBP-3 and IGFBP-2 increased 8.5-fold and 5-fold, respectively, whereas IGFBP-4 and the 31,000 M, species decreased 43% and 90%. Caco-2 cell clones stably transfected with a human IGFBP-4 cDNA construct exhibited a 60% increase in steady-state level of IGFBP-4 mRNA, and secreted twice as much IGFBP-4 protein as controls. Moreover, IGFBP-4-overexpressing cells proliferated at only 25% the rate of control cells in serum-free medium, in conjunction with a 70% increase in expression of sucrase-isomaltase. In summary, these studies indicate that a complex IGF axis is involved in autocrine regulation of Caco-2 cell proliferation and differentiation. © 1996 Wiley-Liss, Inc.  相似文献   
88.
89.
EDA-A1 and EDA-A2 are members of the tumor necrosis factor family of ligands. The products of alternative splicing of the ectodysplasin (EDA) gene, EDA-A1 and EDA-A2 differ by an insertion of two amino acids and bind to distinct receptors. The longer isoform, EDA-A1, binds to EDAR and plays an important role in sweat gland, hair, and tooth development; mutations in EDA, EDAR, or the downstream adaptor EDARADD cause hypohidrotic ectodermal dysplasia. EDA-A2 engages the receptor XEDAR, but its role in the whole organism is less clear. We have generated XEDAR-deficient mice by gene targeting and transgenic mice expressing secreted forms of EDA-A1 or EDA-A2 downstream of the skeletal muscle-specific myosin light-chain 2 or skin-specific keratin 5 promoter. Mice lacking XEDAR were indistinguishable from their wild-type littermates, but EDA-A2 transgenic mice exhibited multifocal myodegeneration. This phenotype was not observed in the absence of XEDAR. Skeletal muscle in EDA-A1 transgenic mice was unaffected, but their sebaceous glands were hypertrophied and hyperplastic, consistent with a role for EDA-A1 in the development of these structures. These data indicate that XEDAR-transduced signals are dispensable for development of ectoderm-derived organs but might play a role in skeletal muscle homeostasis.  相似文献   
90.
Cell adhesion and spreading depend on activation of mitogen-activated kinase, which in turn is regulated both by growth factor and integrin signaling. Growth factors, such as epidermal growth factor, are capable of activating Ras and Raf, but integrin signaling is required to couple Raf to MEK and MEK to extracellular signal-regulated protein kinase (ERK). It was previously shown that Rac-p21-activated kinase (PAK) signaling regulated the physical association of MEK1 with ERK2 through phosphorylation sites in the proline-rich sequence (PRS) of MEK1. It was also shown that activation of MEK1 and ERK by integrins depends on PAK phosphorylation of S298 in the PRS. Here we report a novel MEK1-specific regulatory feedback mechanism that provides a means by which activated ERK can terminate continued PAK phosphorylation of MEK1. Activated ERK can phosphorylate T292 in the PRS, and this blocks the ability of PAK to phosphorylate S298 and of Rac-PAK signaling to enhance MEK1-ERK complex formation. Preventing ERK feedback phosphorylation on T292 during cellular adhesion prolonged phosphorylation of S298 by PAK and phosphorylation of S218 and S222, the MEK1 activating sites. We propose that activation of ERK during adhesion creates a feedback system in which ERK phosphorylates MEK1 on T292, and this in turn blocks additional S298 phosphorylation in response to integrin signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号