首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   500篇
  免费   49篇
  549篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   15篇
  2017年   9篇
  2016年   24篇
  2015年   25篇
  2014年   26篇
  2013年   35篇
  2012年   39篇
  2011年   32篇
  2010年   34篇
  2009年   26篇
  2008年   25篇
  2007年   35篇
  2006年   25篇
  2005年   26篇
  2004年   16篇
  2003年   18篇
  2002年   21篇
  2001年   3篇
  2000年   7篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1966年   1篇
  1961年   1篇
  1942年   1篇
排序方式: 共有549条查询结果,搜索用时 0 毫秒
41.
Familial hypomagnesemia is a rare human disorder caused by renal or intestinal magnesium (Mg(2+)) wasting, which may lead to symptoms of Mg(2+) depletion such as tetany, seizures, and cardiac arrhythmias. Our knowledge of the physiology of Mg(2+) (re)absorption, particularly the luminal uptake of Mg(2+) along the nephron, has benefitted from positional cloning approaches in families with Mg(2+) reabsorption disorders; however, basolateral Mg(2+) transport and its regulation are still poorly understood. Here, by using a candidate screening approach, we identified CNNM2 as a gene involved in renal Mg(2+) handling in patients of two unrelated families with unexplained dominant hypomagnesemia. In the kidney, CNNM2 was predominantly found along the basolateral membrane of distal tubular segments involved in Mg(2+) reabsorption. The basolateral localization of endogenous and recombinant CNNM2 was confirmed in epithelial kidney cell lines. Electrophysiological analysis showed that CNNM2 mediated Mg(2+)-sensitive Na(+) currents that were significantly diminished in mutant protein and were blocked by increased extracellular Mg(2+) concentrations. Our data support the findings of a recent genome-wide association study showing the CNNM2 locus to be associated with serum Mg(2+) concentrations. The mutations found in CNNM2, its observed sensitivity to extracellular Mg(2+), and its basolateral localization signify a critical role for CNNM2 in epithelial Mg(2+) transport.  相似文献   
42.
The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV) infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web) and assists viral assembly in the close vicinity of lipid droplets (LDs). To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1–31), a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47) as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon), indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A) in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47—via its interaction with NS5A—serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.  相似文献   
43.
44.
Pyroptosis is a fulminant form of macrophage cell death, contributing to release of pro‐inflammatory cytokines. In humans, it depends on caspase 1/4‐activation of gasdermin D and is characterized by the release of cytoplasmic content. Pathogens apply strategies to avoid or antagonize this host response. We demonstrate here that a small accessory protein (PB1‐F2) of contemporary H5N1 and H3N2 influenza A viruses (IAV) curtails fulminant cell death of infected human macrophages. Infection of macrophages with a PB1‐F2‐deficient mutant of a contemporary IAV resulted in higher levels of caspase‐1 activation, cleavage of gasdermin D, and release of LDH and IL‐1β. Mechanistically, PB1‐F2 limits transition of NLRP3 from its auto‐repressed and closed confirmation into its active state. Consequently, interaction of a recently identified licensing kinase NEK7 with NLRP3 is diminished, which is required to initiate inflammasome assembly.  相似文献   
45.
46.
47.
Systemic delivery of Ag usually induces poor mucosal immunity. To improve the CD8 T cell response at mucosal sites, we targeted the Ag to MAdCAM-1, a mucosal addressin cell adhesion molecule expressed mainly by high endothelial venules (HEV) in mesenteric lymph nodes (MLN) and Peyer's patches of gut-associated lymphoid tissue. When chemical conjugates of anti-MAdCAM-1 Ab and model Ag OVA were injected i.v., a greatly enhanced proliferative response of Ag-specific OT-I CD8 T cells was detected in MLN. This was preceded by prolonged accumulation, up to 2 wk, of the anti-MAdCAM OVA conjugate on HEV of Peyer's patches and MLN. In contrast, nontargeted OVA conjugate was very inefficient in inducing OT-I CD8 T cell proliferation in MLN and required at least 20-fold more Ag to induce a comparable response. In addition, MAdCAM targeting elicits an endogenous OVA-specific CD8 T cell response, evident by IFN-gamma production and target killing. Induced response offers protection against an OVA-expressing B cell lymphoma. We propose that the augmentation of gut CD8 T cell responses by MAdCAM targeting is due to both accumulation of Ag in the HEV and conversion of a soluble Ag to a cell-associated one, allowing cross-presentation by DCs.  相似文献   
48.
Lobelia giberroa is a giant rosette plant growing in the afro-montane belt of the afro-alpine environment, a unique and little-studied ecosystem occupying the high mountains of eastern Africa. We analysed amplified fragment length polymorphisms (AFLPs) from 11 mountain systems in Ethiopia and Tropical East Africa to infer the phylogeographical history of the species. A total of 191 individuals were investigated from 25 populations. Principal coordinate analysis and population structure analyses revealed three major phylogeographical groups: the Ethiopian mountains and one group on each side of the Rift Valley in Tropical East Africa, respectively: Elgon-Cherangani and Kenya-Aberdare-Kilimanjaro-Meru. Analysis of Molecular Variance showed 55.7% variance among the three groups, suggesting an old divergence. Together with a clear geographical substructure within the main groups, this pattern indicates gradual expansion and supports the montane forest bridge hypothesis, stating that the area occupied by forest was larger and more continuous in previous interglacials and earlier in the present interglacial. Genetic diversity was lower in Ethiopia than in the other two main groups, possibly due to an ancient founder effect when Ethiopia was colonized from the south.  相似文献   
49.
Seven new species of oribatid mites of the genus Galumna are described from litter and soil materials of Sumatra, Indonesia. A new subgenus, Galumna (Atypicogalumna) subgen. n., is proposed; it differs from all galumnid genera and subgenera by the simultaneous presence of porose areas and sacculi on the notogaster (vs. either porose areas or sacculi present). Galumna (Galumna) calva Starý, 1997 is recorded for the first time in the Oriental region, and Galumna (Galumna) sabahna Mahunka, 1995 is recorded for the first time in the Indonesian fauna.  相似文献   
50.
The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4-6?h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10-20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号