首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   62篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   6篇
  2018年   16篇
  2017年   9篇
  2016年   24篇
  2015年   29篇
  2014年   34篇
  2013年   39篇
  2012年   42篇
  2011年   37篇
  2010年   41篇
  2009年   33篇
  2008年   31篇
  2007年   47篇
  2006年   32篇
  2005年   26篇
  2004年   21篇
  2003年   27篇
  2002年   24篇
  2001年   8篇
  2000年   19篇
  1999年   18篇
  1998年   9篇
  1997年   8篇
  1996年   6篇
  1995年   12篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1989年   6篇
  1988年   4篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1972年   1篇
  1968年   3篇
  1966年   2篇
  1961年   1篇
  1953年   1篇
  1952年   1篇
  1942年   1篇
排序方式: 共有673条查询结果,搜索用时 359 毫秒
51.
Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development.  相似文献   
52.
Seven new species of oribatid mites of the genus Galumna are described from litter and soil materials of Sumatra, Indonesia. A new subgenus, Galumna (Atypicogalumna) subgen. n., is proposed; it differs from all galumnid genera and subgenera by the simultaneous presence of porose areas and sacculi on the notogaster (vs. either porose areas or sacculi present). Galumna (Galumna) calva Starý, 1997 is recorded for the first time in the Oriental region, and Galumna (Galumna) sabahna Mahunka, 1995 is recorded for the first time in the Indonesian fauna.  相似文献   
53.
The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4-6?h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10-20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency.  相似文献   
54.

Background

SOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. SOX2 appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of SOX2 in GBM has not yet been defined.

Results

We show that knockdown of the SOX2 gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the SOX2 response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 SOX2 binding regions in the GBM cancer genome. SOX2 binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 SOX2 binding regions. Microarray analysis identified 489 genes whose expression altered in response to SOX2 knockdown. Interesting findings include that SOX2 regulates the expression of SOX family proteins SOX1 and SOX18, and that SOX2 down regulates BEX1 (brain expressed X-linked 1) and BEX2 (brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by SOX2, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and SOX2 form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells.

Conclusions

We present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the SOX2 response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of SOX2 in carcinogenesis and serves as a useful resource for the research community.  相似文献   
55.
For DNA targeting anticancer drugs, cellular DNA repair mechanisms may cause resistance and hamper the therapeutic outcome. DNA damage induced by topoisomerase IIα inhibitors like etoposide and anthracyclines, which are a mainstay of cancer therapy, is also repaired in many cell types, but the impact and precise mechanisms of this repair are still obscure. To investigate the DNA damage response of human adenocarcinoma HT29-cells to doxorubicin and to compare the involvement of Ku70 and Rad51 in the repair of doxorubicin- versus etoposide-induced DNA damage, we assessed cell cycle distribution and cell death, DNA damage, proteins relevant for repair by homologous recombination and non-homologous end-joining, and clonogenicity following exposure to doxorubicin at clinically achievable concentrations. Also, we assessed changes in the repair kinetics after siRNA-mediated attenuation of Ku70 or Rad51 expression. We found that exposure to doxorubicin for 24 h induced a substantial amount of DNA damage that was largely repaired when doxorubicin was removed and the cells were maintained in drug-free medium. Nevertheless, a pronounced G2/M arrest occurred at times when repair was maximal. This was followed by a distinct increase in cell death and loss of clonogenicity. In this regard, responses to doxorubicin and etoposide were similar. However, distinct differences in the repair process following doxorubicin versus etoposide were seen in concentration dependency, time-course and requirement of Ku70 and Rad51 proteins. In spite of the shared molecular target of doxorubicin and etoposide, DNA lesions induced by these compounds are repaired differently.  相似文献   
56.

Background

Phlebotomine sand flies are blood-sucking insects that can transmit Leishmania parasites. Hosts bitten by sand flies develop an immune response against sand fly salivary antigens. Specific anti-saliva IgG indicate the exposure to the vector and may also help to estimate the risk of Leishmania spp. transmission. In this study, we examined the canine antibody response against the saliva of Phlebotomus perniciosus, the main vector of Leishmania infantum in the Mediterranean Basin, and characterized salivary antigens of this sand fly species.

Methodology/Principal Findings

Sera of dogs bitten by P. perniciosus under experimental conditions and dogs naturally exposed to sand flies in a L. infantum focus were tested by ELISA for the presence of anti-P. perniciosus antibodies. Antibody levels positively correlated with the number of blood-fed P. perniciosus females. In naturally exposed dogs the increase of specific IgG, IgG1 and IgG2 was observed during sand fly season. Importantly, Leishmania-positive dogs revealed significantly lower anti-P. perniciosus IgG2 compared to Leishmania-negative ones. Major P. perniciosus antigens were identified by western blot and mass spectrometry as yellow proteins, apyrases and antigen 5-related proteins.

Conclusions

Results suggest that monitoring canine antibody response to sand fly saliva in endemic foci could estimate the risk of L. infantum transmission. It may also help to control canine leishmaniasis by evaluating the effectiveness of anti-vector campaigns. Data from the field study where dogs from the Italian focus of L. infantum were naturally exposed to P. perniciosus bites indicates that the levels of anti-P. perniciosus saliva IgG2 negatively correlate with the risk of Leishmania transmission. Thus, specific IgG2 response is suggested as a risk marker of L. infantum transmission for dogs.  相似文献   
57.
The stability and tight integration into adjacent tissue of a novel, degradable, elastic copolymer were examined in an animal model. The biomaterial was used for the reconstruction of a gastric wall defect in Sprague-Dawley rats (n=42) to test the polymeric material under the extreme chemical, enzymatical and mechanical conditions of the stomach. In the control group (n=21) the same defect of the gastric wall was primarily closed without biomaterial implantation. In the baseline group (n=21) the animals were kept under standard conditions without any surgical procedure. The implantation periods were 1 week, 4 weeks and 6 months. The animals' weight was determined preoperatively and before explantation. After explantation, air was pumped into the stomach and the pressure was measured by using a pressure-gauge in order to test whether the surgically produced union of the stomach wall and the polymer patch was gas-tight. After 1 week of implantation time a statistically significant increase of the body weight of the animals was found only in the baseline group. Four weeks and 6 months after the abdominal surgical procedure, a statistically significant increase of the animals' weight was found in the implantation group, the control and the baseline group. Gastrointestinal complications like fistula, perforation or peritonitis did not occur in any of the animals. The measurement of the stomach pressure after maximal gas insufflation did not show significant differences between the implantation group, the control and the baseline group in any of the time periods investigated. Despite very high strains of the gastric wall, no gas leakage was detected. There was a tight connection between the polymer and the adjacent stomach wall in all animals investigated. An adequate mechanical stability of the biomaterial was detectable under the extreme pathophysiological conditions of the stomach milieu. A fast and unfavourable degradation of the degradable polymer was not found in any of the animals. Further investigations are needed to analyse the mechanisms of the tissue integration of the biomaterial as well as the degradation kinetic of the polymer and the process of the tissue remodeling. The knowledge of these processes is necessary to adapt the novel biomaterial and thus prepare it for the use and implantation in different body locations and to develop novel therapeutical options in medicine.  相似文献   
58.
59.
Stewart PE  Byram R  Grimm D  Tilly K  Rosa PA 《Plasmid》2005,53(1):1-13
The spirochete Borrelia burgdorferi, the causative agent of Lyme disease, has an unusual genome comprised of a linear chromosome and the largest plasmid complement of any characterized bacterium. Certain plasmid-encoded elements are required for virulence and viability, both in vitro and in vivo. The genetic tools to manipulate B. burgdorferi are sufficiently developed for precise molecular genetic investigations. B. burgdorferi now represents a prime system with which to address basic questions of plasmid biology and plasmid contributions to bacterial virulence and disease pathogenesis.  相似文献   
60.
A complex programme of regulation governs gene expression during development of the morphologically and biochemically complex eubacterial genus Streptomyces. Earlier work has suggested a model in which 'higher level' pleiotropic regulators activate 'pathway-specific' regulators located within chromosomal gene clusters encoding biosynthesis of individual antibiotics. We used mutational analysis and adventitious overexpression of key Streptomyces coelicolor regulators to investigate functional interactions among them. We report here that cluster-situated regulators (CSRs) thought to be pathway-specific can also control other antibiotic biosynthetic gene clusters, and thus have pleiotropic actions. Surprisingly, we also find that CSRs exhibit growth-phase-dependent control over afsR2/afsS, a 'higher level' pleiotropic regulatory locus not located within any of the chromosomal gene clusters it targets, and further demonstrate that cross-regulation by CSRs is modulated globally and differentially during the S. coelicolor growth cycle by the RNaseIII homologue AbsB. Our results, which reveal a network of functional interactions among regulators that govern production of antibiotics and other secondary metabolites in S. coelicolor, suggest that revision of the currently prevalent view of higher-level versus pathway-specific regulation of secondary metabolism in Streptomyces species is warranted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号