首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1137篇
  免费   80篇
  国内免费   9篇
  2022年   9篇
  2021年   14篇
  2020年   9篇
  2019年   5篇
  2018年   17篇
  2017年   16篇
  2016年   34篇
  2015年   50篇
  2014年   53篇
  2013年   62篇
  2012年   63篇
  2011年   72篇
  2010年   52篇
  2009年   50篇
  2008年   48篇
  2007年   65篇
  2006年   62篇
  2005年   43篇
  2004年   36篇
  2003年   57篇
  2002年   43篇
  2001年   26篇
  2000年   25篇
  1999年   27篇
  1998年   26篇
  1997年   19篇
  1996年   9篇
  1995年   14篇
  1994年   18篇
  1993年   12篇
  1992年   9篇
  1991年   11篇
  1990年   21篇
  1989年   16篇
  1988年   11篇
  1987年   7篇
  1986年   10篇
  1985年   6篇
  1984年   12篇
  1983年   5篇
  1982年   12篇
  1981年   4篇
  1979年   10篇
  1977年   8篇
  1975年   7篇
  1972年   5篇
  1971年   4篇
  1968年   3篇
  1966年   4篇
  1954年   3篇
排序方式: 共有1226条查询结果,搜索用时 31 毫秒
131.
132.
Although multiple viruses utilize host cell cyclophilins, including severe acute respiratory syndrome (SARS) and human immunodeficiency virus type-1(HIV-1), their role in infection is poorly understood. To help elucidate these roles, we have characterized the first virally encoded cyclophilin (mimicyp) derived from the largest virus discovered to date (the Mimivirus) that is also a causative agent of pneumonia in humans. Mimicyp adopts a typical cyclophilin-fold, yet it also forms trimers unlike any previously characterized homologue. Strikingly, immunofluorescence assays reveal that mimicyp localizes to the surface of the mature virion, as recently proposed for several viruses that recruit host cell cyclophilins such as SARS and HIV-1. Additionally mimicyp lacks peptidyl-prolyl isomerase activity in contrast to human cyclophilins. Thus, this study suggests that cyclophilins, whether recruited from host cells (i.e. HIV-1 and SARS) or virally encoded (i.e. Mimivirus), are localized on viral surfaces for at least a subset of viruses.  相似文献   
133.
134.
The hemoglobin gene 1 (dmeglob1) of the fruit fly Drosophila melanogaster is expressed in the tracheal system and fat body, and has been implicated in hypoxia resistance. Here we investigate the expression levels of dmeglob1 and lactate dehydrogenase (a positive control) in embryos, third instar larvae and adult flies under various regimes of hypoxia and hyperoxia. As expected, mRNA levels of lactate dehydrogenase increased under hypoxia. We show that expression levels of dmeglob1 are decreased under both short- and long-term hypoxia, compared with the normoxic (21% O2) control. By contrast, a hypoxia/reoxygenation regime applied to third instar larvae elevated the level of dmeglob1 mRNA. An excess of O2 (hyperoxia) also triggered an increase in dmeglob1 mRNA. The data suggest that Drosophila hemoglobin may be unlikely to function merely as a myoglobin-like O2 storage protein. Rather, dmeglob1 may protect the fly from an excess of O2, either by buffering the flux of O2 from the tracheoles to the cells or by degrading noxious reactive oxygen species.  相似文献   
135.
Intracellular lipid accumulation (steatosis) and resultant lipotoxicity are key features of diabetic cardiomyopathy. Since cardiac hormone-sensitive lipase (HSL) is activated in diabetic mice, we sought to explore a pathophysiological function of cardiac HSL in the development of diabetic cardiomyopathy. Transgenic (Tg) mice with heart-specific HSL overexpression were generated, and cardiac histology, function, lipid profile, and gene expressions were analyzed after induction of diabetes by streptozotocin. Electron microscopy showed numerous lipid droplets in wild-type (Wt) hearts after 3 wk of diabetes, whereas Tg mice showed no lipid droplet accumulation. Cardiac content of acylglycerides was increased approximately 50% with diabetes in Wt mice, whereas this was blunted in Tg hearts. Cardiac lipid peroxide content was twofold lower in Tg hearts than in Wt hearts. The mRNA expressions for peroxisome proliferator-activated receptor-alpha, genes for triacylglycerol synthesis, and lipoprotein lipase were increased with diabetes in Wt hearts, whereas this induction was absent in Tg hearts. Expression of genes associated with lipoapoptosis was decreased, whereas antioxidant protein metallothioneins were increased in diabetic Tg hearts. Diabetic Wt hearts showed interstitial fibrosis and increased collagen content. However, Tg hearts displayed no overt fibrosis, concomitant with decreased expression of collagens, transforming growth factor-beta, and matrix metalloproteinase 2. Notably, mortality during the experimental period was approximately twofold lower in diabetic Tg mice compared with Wt mice. In conclusion, since HSL overexpression inhibits cardiac steatosis and fibrosis by apparently hydrolyzing toxic lipid metabolites, cardiac HSL could be a therapeutic target for regulating diabetic cardiomyopathy.  相似文献   
136.
A gene regulatory network subcircuit comprising the otx, wnt8, and blimp1 genes accounts for a moving torus of gene expression that sweeps concentrically across the vegetal domain of the sea urchin embryo. Here we confirm by mutation the inputs into the blimp1cis-regulatory module predicted by network analysis. Its essential design feature is that it includes both activation and autorepression sites. The wnt8 gene is functionally linked into the subcircuit in that cells receiving this ligand generate a β-catenin/Tcf input required for blimp1 expression, while the wnt8 gene in turn requires a Blimp1 input. Their torus-like spatial expression patterns and gene regulatory analysis indicate that the genes even-skipped and hox11/13b are also entrained by this subcircuit. We verify the cis-regulatory inputs of even-skipped predicted by network analysis. These include activation by β-catenin/Tcf and Blimp1, repression within the torus by Hox11/13b, and repression outside the torus by Tcf in the absence of Wnt8 signal input. Thus even-skipped and hox11/13b, along with blimp1 and wnt8, are members of a cohort of torus genes with similar regulatory inputs and similar, though slightly out-of-phase, expression patterns, which reflect differences in cis-regulatory design.  相似文献   
137.
138.
The effect of repeated N additions on a dense, shallow meadow of Posidonia oceanica (L.) Delile in the NW Mediterranean was studied over a year. N was added biweekly both to the sediment and to the water column as ammonium and nitrate. The most obvious result of these additions was an overall increase in N content (% DW) in all tissues of fertilized plants; this increase was maximum in rhizomes, with values of 5% N reached, which confirmed the storage capacities of these organs.Fertilization affected the different N fractions in distinct ways. The free amino acid (FAA) concentration increased the most, particularly in rhizomes and roots, suggesting the function of these compounds for N storage and, probably, translocation. The non-soluble N fraction also increased greatly. The total soluble protein (TSP) and the inorganic N forms concentrations were less sensitive to fertilization, and only increased moderately in a few cases. N assimilation, assessed through in vivo glutamine synthetase (GS) activity, was maximum in leaves after the peak of growth, which coincided with the lowest N values in both control and fertilized plants. Thus assimilation was probably greatest at the period of highest N deficiency. Growth rates did not respond to N enrichment. Another clear effect of N addition was to decrease carbon reserves. In effect, the concentration of total non-structural carbohydrate (TNC) greatly decreased in rhizomes of fertilized plants, coinciding with the increase in FAA. We conclude that increased nitrogen availability can affect plant survival through the decrease in their carbon reserves, crucial for P. oceanica overwintering. This interaction between N and C metabolism helps to explain changes in benthic vegetation after steadily increasing coastal water eutrophication.  相似文献   
139.
140.
Hormone-sensitive lipase (HSL) is an intracellular lipase that plays an important role in the hydrolysis of triacylglycerol in adipose tissue. HSL has been shown to interact with adipocyte lipid-binding protein (ALBP), a member of the family of intracellular lipid-binding proteins that bind fatty acids and other hydrophobic ligands. The current studies have addressed the functional significance of the association and mapped the site of interaction between HSL and ALBP. Incubation of homogeneous ALBP with purified, recombinant HSL in vitro resulted in a 2-fold increase in substrate hydrolysis. Moreover, the ability of oleate to inhibit HSL hydrolytic activity was attenuated by co-incubation with ALBP. Co-transfection of Chinese hamster ovary cells with HSL and ALBP resulted in greater hydrolytic activity than transfection of cells with HSL and vector alone. Deletional mutations of HSL localized the region of HSL that interacts with ALBP to amino acids 192-200, and site-directed mutagenesis of individual amino acids in this region identified His-194 and Glu-199 as critical for mediating the interaction of HSL with ALBP. Interestingly, HSL mutants H194L and E199A, each of which retained normal basal hydrolytic activity, failed to display an increase in hydrolytic activity when co-transfected with wild type ALBP. Therefore, ALBP increases the hydrolytic activity of HSL through its ability to bind and sequester fatty acids and via specific protein-protein interaction. Thus, HSL and ALBP constitute a functionally important lipolytic complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号