首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   668篇
  免费   65篇
  国内免费   1篇
  734篇
  2022年   9篇
  2021年   9篇
  2020年   4篇
  2018年   6篇
  2017年   8篇
  2016年   16篇
  2015年   31篇
  2014年   38篇
  2013年   35篇
  2012年   41篇
  2011年   52篇
  2010年   24篇
  2009年   22篇
  2008年   30篇
  2007年   30篇
  2006年   44篇
  2005年   33篇
  2004年   24篇
  2003年   26篇
  2002年   33篇
  2001年   11篇
  2000年   7篇
  1999年   14篇
  1998年   17篇
  1997年   11篇
  1996年   4篇
  1995年   6篇
  1994年   14篇
  1993年   8篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   8篇
  1985年   4篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   7篇
  1980年   8篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1974年   5篇
  1970年   6篇
  1969年   4篇
  1938年   2篇
  1935年   2篇
排序方式: 共有734条查询结果,搜索用时 11 毫秒
91.
Cytoskeletal filaments of the α-keratin type (cytokeratins) are a characteristic of epithelial cells. In diverse mammals (man, cow and rodents) these cytokeratins consist of a family of approximately 20 polypeptides, which may be divided into the more acidic (I) and the more basic (II) subfamilies. These two subfamilies show only limited amino acid sequence homology. In contrast, nucleic acid hybridization experiments and peptide maps have been interpreted to show that polypeptides of the same subfamily share extended sequence homology.We compare two polypeptides of the acidic cytokeratin subfamily, VIb (Mr 54,000) and VII (Mr 50,000), which are co-expressed in large amounts in bovine epidermal keratinocytes. These two epidermal keratins can be distinguished by specific antibodies and show different patterns of expression among several bovine tissues and cultured cells. In addition, they differ in the stability of their complexes with basic keratin polypeptides and in their tryptic peptide maps. The amino acid sequences deduced from the nucleotide sequences of complementary DNA clones containing the 3′ ends of the messenger RNAs for these keratins are compared with each other and with available amino acid sequences of human, murine and amphibian epidermal keratins. Bovine keratins VIb and VII share considerable sequence homology in the α-helical portion (68% residues identical) but lack significant homology in the extrahelical portion. Bovine keratin VIb shows, in its α-helical region, a pronounced sequence homology (88% identity) to the murine epidermal keratin of Mr 59,000. In addition, the non-helical carboxy-terminal regions of both proteins are glycinerich and contain a canonic sequence GGGSGYGG, which may be repeated several times. Moreover, their mRNAs present a highly conserved stretch of 236 nucleotides containing, in the murine sequence, the end of the coding and all of the non-coding region (81% identical nucleotides). Bovine keratin VII is considerably different from the murine Mr 59,000 keratin but is almost identical to the human cytokeratin number 14 of Mr 50,000, both in the α-helical and in the non-α-helical regions of the proteins, and the mRNAs of the human and the bovine keratins also display a high homology in their 3′ non-coding ends.The results show that in the same species keratins of the same subfamily can differ considerably, whereas equivalent keratin polypeptides of different species are readily identified by characteristic sequence homologies in the α-helical and the non-helical regions as well as in the 3′ non-coding portions of their mRNAs. Among the members of the acidic subfamily I of cytokeratin polypeptides that are co-expressed in bovine epidermis, at least two types can be distinguished by their carboxy-terminal sequences. One type is characterized by its abundance of glycine residues, a consensus GGGSGYGG heptapeptide sequence, which may be repeated several times, and an extended stretch of high RNA sequence homology in the 3′ non-coding part. The other type shows a predominance of serine and valine residues, a subterminal GGGSGYGG sequence (which has been maintained in Xenopus, cow and man) and also a high level of homology in the 3′ non-coding part of the mRNA. The data indicate that individual keratin type specificity overrides species diversity, both at the protein and the mRNA level. We discuss the evolutionary conservation and the tissue distribution of these two types of acidic keratin polypeptides as well as their possible biological functions.  相似文献   
92.
Dehydration leads to different physiological and biochemical responses in plants. We analysed the lipid composition and the expression of genes involved in lipid biosynthesis in the desiccation‐tolerant plant Craterostigma plantagineum. A comparative approach was carried out with Lindernia brevidens (desiccation tolerant) and two desiccation‐sensitive species, Lindernia subracemosa and Arabidopsis thaliana. In C. plantagineum the total lipid content remained constant while the lipid composition underwent major changes during desiccation. The most prominent change was the removal of monogalactosyldiacylglycerol (MGDG) from the thylakoids. Analysis of molecular species composition revealed that around 50% of 36:x (number of carbons in the acyl chains: number of double bonds) MGDG was hydrolysed and diacylglycerol (DAG) used for phospholipid synthesis, while another MGDG fraction was converted into digalactosyldiacylglycerol via the DGD1/DGD2 pathway and subsequently into oligogalactolipids by SFR2. 36:x‐DAG was also employed for the synthesis of triacylglycerol. Phosphatidic acid (PA) increased in C. plantagineum, L. brevidens, and L. subracemosa, in agreement with a role of PA as an intermediate of lipid turnover and of phospholipase D in signalling during desiccation. 34:x‐DAG, presumably derived from de novo assembly, was converted into phosphatidylinositol (PI) in C. plantagineum and L. brevidens, but not in desiccation‐sensitive plants, suggesting that PI is involved in acquisition of desiccation tolerance. The accumulation of oligogalactolipids and PI in the chloroplast and extraplastidial membranes, respectively, increases the concentration of hydroxyl groups and enhances the ratio of bilayer‐ to non‐bilayer‐forming lipids, thus contributing to protein and membrane stabilization.  相似文献   
93.
94.
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.  相似文献   
95.
Hepatitis C virus (HCV) infection is still a serious global health burden. Despite improved therapeutic options, a preventative vaccine would be desirable especially in undeveloped countries. Traditionally, highly conserved epitopes are targets for antibody-based prophylactic vaccines. In HCV-infected patients, however, neutralizing antibodies are primarily directed against hypervariable region I (HVRI) in the envelope protein E2. HVRI is the most variable region of HCV, and this heterogeneity contributes to viral persistence and has thus far prevented the development of an effective HVRI-based vaccine. The primary goal of an antibody-based HCV vaccine should therefore be the induction of cross-reactive HVRI antibodies. In this study we approached this problem by presenting selected cross-reactive HVRI variants in a highly symmetric repeated array on capsid-like particles (CLPs). SplitCore CLPs, a novel particulate antigen presentation system derived from the HBV core protein, were used to deliberately manipulate the orientation of HVRI and therefore enable the presentation of conserved parts of HVRI. These HVRI-CLPs induced high titers of cross-reactive antibodies, including neutralizing antibodies. The combination of only four HVRI CLPs was sufficient to induce antibodies cross-reactive with 81 of 326 (24.8%) naturally occurring HVRI peptides. Most importantly, HVRI CLPs with AS03 as an adjuvant induced antibodies with a 10-fold increase in neutralizing capability. These antibodies were able to neutralize infectious HCVcc isolates and 4 of 19 (21%) patient-derived HCVpp isolates. Taken together, these results demonstrate that the induction of at least partially cross-neutralizing antibodies is possible. This approach might be useful for the development of a prophylactic HCV vaccine and should also be adaptable to other highly variable viruses.  相似文献   
96.

Background

The impact of infections with the human cytomegalovirus (HCMV) for the development of atherosclerosis and restenosis is still unclear. Both a clear correlation and no correlation at all have been reported in clinical, mostly serological studies. In our study we employed a human non-injury ex vivo organ culture model to investigate the effect of an in vitro permissive HCMV-infection on cell proliferation and neointimal hyperplasia for a period of 56 days.

Results

During routine-nephrectomies parts of renal arteries from 71 patients were obtained and prepared as human organ cultures. Cell free HCMV infection was performed with the fibroblast adapted HCMV strain AD169, the endotheliotropic strain TB40E, and a clinical isolate (AN 365). After 3, 7, 14, 21, 28, 35, and 56 days in culture staining of HCMV-antigens was carried out and reactive cell proliferation and neointimal thickening were analysed. Successful HCMV-infection was accomplished with all three virus strains studied. During the first 21 days in organ culture no cell proliferation or neointimal hyperplasia was detected. At day 35 and day 56 moderate cell proliferation and neointimal hyperplasia was found both in HCMV-infected segments and mock infected controls. Neointimal hyperplasia in productively HCMV-infected segments was lower than in non infected at day 35 and day 56, but relatively higher after infection with the endotheliotropic TB40E in comparison with the two other strains.

Conclusion

The data do not support the hypothesis that HCMV-infection triggers restenosis via a stimulatory effect on cell proliferation and neointimal hyperplasia in comparison to non infected controls. Interestingly however, even after lytic infection, a virus strain specific difference was observed.  相似文献   
97.
A partially conserved region spanning amino acids 142 to 191 of the Sindbis virus (SIN) nsP4 core polymerase is implicated in host restriction, elongation, and promoter recognition. We extended the analysis of this region by substituting Ser, Ala, or Lys for a highly conserved Arg183 residue immediately preceding its absolutely conserved Ser184-Ala-Val-Pro-Ser188 sequence. In chicken cells, the nsP4 Arg183 mutants had a nonconditionally lethal, temperature-sensitive (ts) growth phenotype caused by a ts defect in minus-strand synthesis whose extent varied with the particular amino acid substituted (Ser>Ala>Lys). Plus-strand synthesis by nsP4 Arg183 mutant polymerases was unaffected when corrected for minus-strand numbers, although 26S mRNA synthesis was enhanced at the elevated temperature compared to wild type. The ts defect was not due to a failure to form or accumulate nsP4 at 40 degrees C. In contrast to their growth in chicken cells, the nsP4 Arg183 mutants replicated equally poorly, if at all, in mosquito cells. We conclude that Arg183 within the Pro180-Asn-Ile-Arg-Ser184 sequence of the SIN nsP4 polymerase contributes to the efficient initiation of minus strands or the formation of its replicase and that a host factor(s) participates in this event.  相似文献   
98.

Introduction

The immunosuppressive therapy with everolimus (ERL) after heart transplantation is characterized by a narrow therapeutic window and a substantial variability in dose requirement. Factors explaining this variability are largely unknown.

Objectives

Our aim was to evaluate factors affecting ERL metabolism and to identify novel metabolites associated with the individual ERL dose requirement to elucidate mechanisms underlying ERL dose response variability.

Method

We used liquid chromatography coupled with mass spectrometry for quantification of ERL metabolites in 41 heart transplant patients and evaluated the effect of clinical and genetic factors on ERL pharmacokinetics. Non-targeted plasma metabolic profiling by ultra-performance liquid chromatography and high resolution quadrupole-time-of-flight mass spectrometry was used to identify novel metabolites associated with ERL dose requirement.

Results

The determination of ERL metabolites revealed differences in metabolite patterns that were independent from clinical or genetic factors. Whereas higher ERL dose requirement was associated with co-administration of sodium-mycophenolic acid and the CYP3A5 expressor genotype, lower dose was required for patients receiving vitamin K antagonists. Global metabolic profiling revealed several novel metabolites associated with ERL dose requirement. One of them was identified as lysophosphatidylcholine (lysoPC) (16:0/0:0). Subsequent targeted analysis revealed that high levels of several lysoPCs were significantly associated with higher ERL dose requirement.

Conclusion

For the first time, this study describes distinct ERL metabolite patterns in heart transplant patients and detected potentially new drug–drug interactions. The global metabolic profiling facilitated the discovery of novel metabolites associated with ERL dose requirement that might represent new clinically valuable biomarkers to guide ERL therapy.
  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号