首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1918篇
  免费   178篇
  国内免费   1篇
  2021年   18篇
  2016年   29篇
  2015年   44篇
  2014年   48篇
  2013年   87篇
  2012年   74篇
  2011年   86篇
  2010年   58篇
  2009年   38篇
  2008年   57篇
  2007年   57篇
  2006年   72篇
  2005年   55篇
  2004年   66篇
  2003年   65篇
  2002年   75篇
  2001年   33篇
  2000年   47篇
  1999年   34篇
  1998年   25篇
  1997年   24篇
  1994年   29篇
  1993年   29篇
  1992年   38篇
  1991年   23篇
  1989年   27篇
  1988年   22篇
  1987年   23篇
  1986年   30篇
  1985年   24篇
  1984年   27篇
  1983年   34篇
  1981年   22篇
  1980年   26篇
  1979年   19篇
  1978年   22篇
  1977年   23篇
  1976年   24篇
  1975年   23篇
  1974年   41篇
  1973年   23篇
  1972年   30篇
  1971年   30篇
  1970年   19篇
  1969年   18篇
  1968年   23篇
  1967年   22篇
  1966年   25篇
  1965年   17篇
  1961年   20篇
排序方式: 共有2097条查询结果,搜索用时 15 毫秒
951.
952.
Detailed analysis of disease-affected tissue provides insight into molecular mechanisms contributing to pathogenesis. Substantia nigra, striatum, and cortex are functionally connected with increasing degrees of alpha-synuclein pathology in Parkinson''s disease. We undertook functional and causal pathway analysis of gene expression and proteomic alterations in these three regions, and the data revealed pathways that correlated with disease progression. In addition, microarray and RNAseq experiments revealed previously unidentified causal changes related to oligodendrocyte function and synaptic vesicle release, and these and other changes were reflected across all brain regions. Importantly, subsets of these changes were replicated in Parkinson''s disease blood; suggesting peripheral tissue may provide important avenues for understanding and measuring disease status and progression. Proteomic assessment revealed alterations in mitochondria and vesicular transport proteins that preceded gene expression changes indicating defects in translation and/or protein turnover. Our combined approach of proteomics, RNAseq and microarray analyses provides a comprehensive view of the molecular changes that accompany functional loss and alpha-synuclein pathology in Parkinson''s disease, and may be instrumental to understand, diagnose and follow Parkinson''s disease progression.  相似文献   
953.
This pilot study aimed to evaluate the feasibility of an assessor-blind, randomised controlled trial of psychodynamic art therapy for the treatment of patients with schizophrenia, and to generate preliminary data on the efficacy of this intervention during acute psychotic episodes. Fifty-eight inpatients with DSM-diagnoses of schizophrenia were randomised to either 12 twice-weekly sessions of psychodynamic group art therapy plus treatment as usual or to standard treatment alone. Primary outcome criteria were positive and negative psychotic and depressive symptoms as well as global assessment of functioning. Secondary outcomes were mentalising function, estimated with the Reading the mind in the eyes test and the Levels of emotional awareness scale, self-efficacy, locus of control, quality of life and satisfaction with care. Assessments were made at baseline, at post-treatment and at 12 weeks'' follow-up. At 12 weeks, 55% of patients randomised to art therapy, and 66% of patients receiving treatment as usual were examined. In the per-protocol sample, art therapy was associated with a significantly greater mean reduction of positive symptoms and improved psychosocial functioning at post-treatment and follow-up, and with a greater mean reduction of negative symptoms at follow-up compared to standard treatment. The significant reduction of positive symptoms at post-treatment was maintained in an attempted intention-to-treat analysis. There were no group differences regarding depressive symptoms. Of secondary outcome parameters, patients in the art therapy group showed a significant improvement in levels of emotional awareness, and particularly in their ability to reflect about others'' emotional mental states. This is one of the first randomised controlled trials on psychodynamic group art therapy for patients with acute psychotic episodes receiving hospital treatment. Results prove the feasibility of trials on art therapy during acute psychotic episodes and justify further research to substantiate preliminary positive results regarding symptom reduction and the recovery of mentalising function.

Trial Registration

ClinicalTrials.gov NCT01622166  相似文献   
954.
Oxaliplatin is widely used to treat colorectal cancer, as both adjuvant therapy for resected disease and palliative treatment of metastatic disease. However, a significant number of patients experience serious side effects, including prolonged neurotoxicity, from oxaliplatin treatment creating an urgent need for biomarkers of oxaliplatin response or resistance to direct therapy to those most likely to benefit. As a first step to improve selection of patients for oxaliplatin-based chemotherapy, we have conducted an in vitro cell-based small interfering RNA (siRNA) screen of 500 genes aimed at identifying genes whose loss of expression alters tumor cell response to oxaliplatin. The siRNA screen identified twenty-seven genes, which when silenced, significantly altered colon tumor cell line sensitivity to oxaliplatin. Silencing of a group of putative resistance genes increased the extent of oxaliplatin-mediated DNA damage and inhibited cell-cycle progression in oxaliplatin-treated cells. The activity of several signaling nodes, including AKT1 and MEK1, was also altered. We used cDNA transfection to overexpress two genes (LTBR and TMEM30A) that were identified in the siRNA screen as mediators of oxaliplatin sensitivity. In both instances, overexpression conferred resistance to oxaliplatin. In summary, this study identified numerous putative predictive biomarkers of response to oxaliplatin that should be studied further in patient specimens for potential clinical application. Diverse gene networks seem to influence tumor survival in response to DNA damage by oxaliplatin. Finally, those genes whose loss of expression (or function) is related to oxaliplatin sensitivity may be promising therapeutic targets to increase patient response to oxaliplatin.  相似文献   
955.
To identify novel targets in pancreatic cancer cells, we used high-throughput RNAi (HT-RNAi) to select genes that, when silenced, would decrease viability of pancreatic cancer cells. The HT-RNAi screen involved reverse transfecting the pancreatic cancer cell line BxPC3 with a siRNA library targeting 572 kinases. From replicate screens, approximately 32 kinases were designated as hits, of which 22 kinase targets were selected for confirmation and validation. One kinase identified as a hit from this screen was tyrosine kinase nonreceptor 1 (TNK1), a kinase previously identified as having tumor suppressor-like properties in embryonic stem cells. Silencing of TNK1 with siRNA showed reduced proliferation in a panel of pancreatic cancer cell lines. Furthermore, we showed that silencing of TNK1 led to increased apoptosis through a caspase-dependent pathway and that targeting TNK1 with siRNA can synergize with gemcitabine treatment. Despite previous reports that TNK1 affects Ras and NF-κB signaling, we did not find similar correlations with these pathways in pancreatic cancer cells. Our results suggest that TNK1 in pancreatic cancer cells does not possess the same tumor suppressor properties seen in embryonic cells but seems to be involved in growth and survival. The application of functional genomics by using HT-RNAi screens has allowed us to identify TNK1 as a growth-associated kinase in pancreatic cancer cells.  相似文献   
956.
We examined the usefulness of the best linear unbiased prediction associated with molecular markers for prediction of untested maize double-cross hybrids. Ten single-cross hybrids from different commercial backgrounds were crossed using a complete diallel design. These 10 single-cross hybrids were genotyped with 20 microsatellite markers. The best linear unbiased prediction associated with microsatellite information gave relatively good prediction ability of the double-cross hybrid performance, with correlations between observed phenotypic values and genotypic prediction values varying from 0.27 to 0.54. Taking into account the predictions of specific combing ability, the correlation between observed and predicted specific combining ability varied from 0.50 to 0.88. Based on these results, we infer that it is feasible to predict maize double-cross hybrids with different unbalance degrees without including any prior information about parental inbreed lines or single-cross hybrid performance.  相似文献   
957.
Ultraviolet irradiation (UV) is the major risk factor for the development of skin cancer. Moreover, increasing evidence suggests cutaneotropic human papillomaviruses (HPV) from the beta genus to play a causal role as a co-factor in the development of cutaneous squamous cell carcinoma. Homeodomain-interacting protein kinase 2 (HIPK2) operates as a potential suppressor in skin tumorigenesis and is stabilized by UV-damage. HIPK2 is an important regulator of apoptosis, which forms a complex with the tumor suppressor p53, mediating p53 phosphorylation at Ser 46 and thus promoting pro-apoptotic gene expression. In our study, we demonstrate that cutaneous HPV23 E6 protein directly targets HIPK2 function. Accordingly, HPV23 E6 interacts with HIPK2 both in vitro and in vivo. Furthermore, upon massive UVB-damage HPV23 E6 co-localizes with endogenous HIPK2 at nuclear bodies. Functionally, we demonstrate that HPV23 E6 inhibits HIPK2-mediated p53 Ser 46 phosphorylation through enforcing dissociation of the HIPK2/p53 complex. In addition, HPV23 E6 co-accumulates with endogenous HIPK2 upon UV damage suggesting a mechanism by which HPV23 E6 keeps HIPK2 in check after UV damage. Thus, cutaneous HPV23 E6 prevents HIPK2-mediated p53 Ser 46 phosphorylation, which may favour survival of UV-damaged keratinocytes and skin carcinogenesis by apoptosis evasion.  相似文献   
958.
This proposed research aims to use novel nanoparticle sensors and spectroscopic tools constituting surface-enhanced Raman spectroscopy (SERS) and Fluorescence Lifetime imaging (FLIM) to study intracellular chemical activities within single bioremediating microorganism. The grand challenge is to develop a mechanistic understanding of chromate reduction and localization by the remediating bacterium Shewanella oneidensis MR-1 by chemical and lifetime imaging. MR-1 has attracted wide interest from the research community because of its potential in reducing multiple chemical and metallic electron acceptors. While several biomolecular approaches to decode microbial reduction mechanisms exist, there is a considerable gap in the availability of sensor platforms to advance research from population-based studies to the single cell level. This study is one of the first attempts to incorporate SERS imaging to address this gap. First, we demonstrate that chromate-decorated nanoparticles can be taken up by cells using TEM and Fluorescence Lifetime imaging to confirm the internalization of gold nanoprobes. Second, we demonstrate the utility of a Raman chemical imaging platform to monitor chromate reduction and localization within single cells. Distinctive differences in Raman signatures of Cr(VI) and Cr(III) enabled their spatial identification within single cells from the Raman images. A comprehensive evaluation of toxicity and cellular interference experiments conducted revealed the inert nature of these probes and that they are non-toxic. Our results strongly suggest the existence of internal reductive machinery and that reduction occurs at specific sites within cells instead of at disperse reductive sites throughout the cell as previously reported. While chromate-decorated gold nanosensors used in this study provide an improved means for the tracking of specific chromate interactions within the cell and on the cell surface, we expect our single cell imaging tools to be extended to monitor the interaction of other toxic metal species.  相似文献   
959.

Introduction

In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone.

Methods

Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay.

Results

We detected expression of key proteins for insulin signaling, such as insulin receptor β-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment.

Discussion

This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain.  相似文献   
960.
Protease inhibitors of primary producers are a major food quality constraint for herbivores. In nutrient‐rich freshwater ecosystems, the interaction between primary producers and herbivores is mainly represented by Daphnia and cyanobacteria. Protease inhibitors have been found in many cyanobacterial blooms. These inhibitors have been shown (both in vitro and in situ) to inhibit the most important group of digestive proteases in the daphnid's gut, that is, trypsins and chymotrypsins. In this study, we fed four different Daphnia magna genotypes with the trypsin‐inhibitor‐containing cyanobacterial strain Microcystis aeruginosa PCC 7806 Mut. Upon exposure to dietary trypsin inhibitors, all D. magna genotypes showed increased gene expression of digestive trypsins and chymotrypsins. Exposure to dietary trypsin inhibitors resulted in increased activity of chymotrypsins and reduced activity of trypsin. Strong intraspecific differences in tolerance of the four D. magna genotypes to the dietary trypsin inhibitors were found. The degree of tolerance depended on the D. magna genotype. The genotypes' tolerance was positively correlated with the residual trypsin activity and the different IC50 values of the trypsins. On the genetic level, the different trypsin loci varied between the D. magna genotypes. The two tolerant Daphnia genotypes that both originate from the same lake, which frequently produces cyanobacterial blooms, clustered in a neighbour‐joining phylogenetic tree based on the three trypsin loci. This suggests that the genetic variability of trypsin loci was an important cause for the observed intraspecific variability in tolerance to cyanobacterial trypsin inhibitors. Based on these findings, it is reasonable to assume that such genetic variability can also be found in natural populations and thus constitutes the basis for local adaptation of natural populations to dietary protease inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号