首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1109篇
  免费   55篇
  2023年   7篇
  2022年   13篇
  2021年   32篇
  2020年   16篇
  2019年   19篇
  2018年   35篇
  2017年   30篇
  2016年   45篇
  2015年   70篇
  2014年   67篇
  2013年   103篇
  2012年   86篇
  2011年   108篇
  2010年   58篇
  2009年   48篇
  2008年   52篇
  2007年   72篇
  2006年   63篇
  2005年   45篇
  2004年   44篇
  2003年   52篇
  2002年   43篇
  2001年   13篇
  2000年   4篇
  1999年   3篇
  1998年   9篇
  1997年   3篇
  1996年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1978年   2篇
排序方式: 共有1164条查询结果,搜索用时 31 毫秒
191.
Kirsz K  Zieba DA 《Peptides》2011,32(11):2256-2264
The gut hormone and neuropeptide ghrelin was initially identified in the periphery as a compound released in the bloodstream in response to a negative energetic status. In the central nervous system (CNS), ghrelin mainly acts on the hypothalamus and the limbic system, with its best-known biological role being the regulation of appetitive functions. Recent research has shown that ghrelin is not an indispensable factor in the regulation of food intake. However, it plays a key role in the metabolic changes of lipids, mainly those involving hypothalamic NOS, AMPK, CaMKK2, CPT1 and UCP2 proteins. Ghrelin participates in the regulation of memory processes and the feeling of pleasure resulting from eating, both of which are metabolism-dependent and may be essential for the successful achievement of adaptive appetitive behavior. Ghrelin exerts its biological effect through a complicated network of neuroendocrine links, including the melanocortin and endocannabinoid systems. The activity of ghrelin is connected with circadian and annual fluctuations, which depend on seasons and food availability.  相似文献   
192.
Acute myocardial infarction (AMI) is one of the most significant causes of morbidity and mortality worldwide. Stem cells represent an enormous chance to rebuild damaged heart tissue. Correct definition of the cardiac progenitors is necessary to understand heart development, and would pave the way for the use of cardiac progenitors in the treatment of heart disease. Identifying, purifying and differentiating native cardiac progenitor cells are indispensable if we are to overcome congenital and adult cardiac diseases. To understand their functions, physiology and action, cells are tested in animal models, and then in clinical trials. But because clinical trials yield variable results, questions about proper cardiac stem cells remain unanswered. Transplanted stem cells release soluble factors, acting in a paracrine fashion, which contributes to cardiac regeneration. Cytokines and growth factors have cytoprotective and neovascularizing functions, and may activate resident cardiac stem cells. Understanding all these mechanisms is crucial to overcoming heart diseases.  相似文献   
193.
Ubiquitin is a conservative polypeptide present in every eukaryotic cell. Apart from its involvement in proteasomal degradation and other intracellular signal pathways, it was suggested to play an important role as the extracellular immunomodulator and antimicrobial agent. Moreover, ubiquitin-derived peptides were shown to express significant biological activities. Our previous studies showed a high immunosuppressive potency of the ubiquitin peptic hydrolysate in which we identified over 70 different peptides. The present work focuses on synthesizing the most abundant of these peptides and investigating their immunomodulatory potency. The peptide VKTLTGKTI possessed the highest immunosuppressory activity in AFC experiments, comparable to the previously described LEDGRTLSDY sequence (a previously discovered ubiquitin-derived peptide). Moreover, some of the investigated peptides expressed immunostimulatory effects. These findings support the idea that ubiquitin, together with products of its degradation, could represent a self-regulating immunoregulatory system. Peptide VKTLTGKTI was also tested for its activity to prolong the skin graft survival in mice. The results showed that the investigated peptide significantly extended the skin transplant rejection time, therefore it could be considered as a potential supplementary medicine in the post-transplantation therapy. Moreover, we synthesized two analogs of investigated peptides, first designed to mimic the non-linear epitope consisting of ubiquitin 16-21 and ubiquitin 52-57 fragments, and second designed to mimic the ubiquitin 5-13 hairpin. We also tested their immunosuppressory activity in in vitro experiments.  相似文献   
194.
Protein kinase C (PKC) is a family of at least 10 isozymes involved in the activation of different signal transduction pathways. The exact function of these isozymes is not known at present. Isozyme-selective inhibitors would be important to explain the function of the different PKCs and are anticipated to have pharmaceutical potential. Here we report that the small organic molecule BAS 02104951 [5-(1,3-benzodioxol-5-ylmethylene)-1-(phenylmethyl)-2,4,6(1H,3H,5H)-pyrimidinetrion], a barbituric acid derivative, inhibited PKCη and PKCε in vitro (IC(50) 18 and 36 μM, respectively). BAS 02104951 also inhibited the interaction of PKCε with its adaptor protein receptor for activated C-kinase 2 (RACK2) (IC(50) 28.5 μM). BAS 02104951 also inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Elk-1 phosphorylation in HeLa cells, translocation of PKCε and PKCη to the membrane following treatment of PC3 cells with TPA. The compound did not inhibit the proliferation of PC3 and HeLa cells. BAS 02104951 can be used as selective inhibitor of PKCε in cells not expressing PKCη and may serve as a basis for the rational development of a selective inhibitor of PKCε or PKCη, or for an inhibitor of the PKCε/RACK2 interaction.  相似文献   
195.
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (~60 kDa) is processed into active BMP10 (~14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.  相似文献   
196.
Hyperglycemia is well-recognized and has long-term complications in diabetes mellitus and diabetic nephropathy. In podocytes, the main component of the glomerular barrier, overproduction of reactive oxygen species (ROS) in the presence of high glucose induces dysfunction and increases excretion of albumin in urine. This suggests an impaired antioxidant defense system has a role in the pathogenesis of diabetic nephropathy. We studied expression of NAD(P)H oxidase subunits by Western blotting and immunofluorescence and the activities of the oxidant enzyme, NAD(P)H, and antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT), in mouse podocytes cultured in a high glucose concentration (30 mM). We found long-term (3 and 5 days) exposure of mouse podocytes to high glucose concentrations caused oxidative stress, as evidenced by increased expression of Nox4 and activities of NAD(P)H oxidase (Δ 182%) and SOD (Δ 39%) and decreased activities of GPx (Δ -40%) and CAT (Δ -35%). These biochemical changes were accompanied by a rise in intracellular ROS production and accumulation of hydrogen peroxide in extracellular space. The role of Nox4 in ROS generation was confirmed with Nox4 siRNA. In conclusion, high glucose concentration affects the oxidant-antioxidant balance in mouse podocytes, resulting in enhanced generation of superoxide anions and its attenuated metabolism. These observations suggest free radicals may play an important role in the pathogenesis of diabetic nephropathy.  相似文献   
197.
198.
199.
Trinucleotide repeats are microsatellite sequences that are polymorphic in length. Their expansion in specific genes underlies a number of neurodegenerative disorders. Using ultraviolet-visible, circular dichroism, nuclear magnetic resonance (NMR) spectroscopies and electrospray ionization mass spectrometry, the structural preferences of RNA molecules composed of two and four repeats of AGG, CGG and UGG in the presence of K+, Na+ and NH4+ were analysed. (AGG)2A, (AGG)4A, p(UGG)2U and p(UGG)4U strongly prefer folding into G-quadruplexes, whereas CGG-containing sequences can adopt different types of structure depending on the cation and on the number of repeats. In particular, the two-repeat CGG sequence folds into a G-quadruplex in potassium buffer. We also found that each G-quadruplex fold is different: A:(G:G:G:G)A hexads were found for (AGG)2A, whereas mixed G:C:G:C tetrads and U-tetrads were observed in the NMR spectra of G(CGG)2C and p(UGG)2U, respectively. Finally, our NMR study highlights the influence of the strand sequence on the structure formed, and the influence of the intracellular environment on the folding. Importantly, we highlight that although potassium ions are prevalent in cells, the structures observed in the HeLa cell extract are not always the same as those prevailing in biophysical studies in the presence of K+ ions.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号