首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1115篇
  免费   55篇
  2023年   7篇
  2022年   19篇
  2021年   32篇
  2020年   16篇
  2019年   19篇
  2018年   35篇
  2017年   30篇
  2016年   45篇
  2015年   70篇
  2014年   67篇
  2013年   103篇
  2012年   86篇
  2011年   108篇
  2010年   58篇
  2009年   48篇
  2008年   52篇
  2007年   72篇
  2006年   63篇
  2005年   45篇
  2004年   44篇
  2003年   52篇
  2002年   43篇
  2001年   13篇
  2000年   4篇
  1999年   3篇
  1998年   9篇
  1997年   3篇
  1996年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1978年   2篇
排序方式: 共有1170条查询结果,搜索用时 15 毫秒
181.
Synthesis and biological activities of a series of homo- or substituted piperidine unsymmetrical diethers are described. The novel compounds were evaluated for histamine H3 receptor binding affinities at recombinant human H3 receptor stably expressed in HEK-293 cells. All diethers showed in vitro affinities in nanomolar concentration range. The most potent compounds are 1-[3-(3-(4-chlorophenoxy)propoxy)propyl]-3-methylpiperidine 11 (Ki = 3.2 nM) and 1-[3-(3-(4-chlorophenoxy)propoxy)propyl]azepane 13 (Ki = 3.5 nM).  相似文献   
182.
In most cilia, the axoneme can be subdivided into three segments: proximal (the transition zone), middle (with outer doublet microtubules), and distal (with singlet extensions of outer doublet microtubules). How the functionally distinct segments of the axoneme are assembled and maintained is not well understood. DYF-1 is a highly conserved ciliary protein containing tetratricopeptide repeats. In Caenorhabditis elegans, DYF-1 is specifically needed for assembly of the distal segment (G. Ou, O. E. Blacque, J. J. Snow, M. R. Leroux, and J. M. Scholey. Nature. 436:583-587, 2005). We show that Tetrahymena cells lacking an ortholog of DYF-1, Dyf1p, can assemble only extremely short axoneme remnants that have structural defects of diverse natures, including the absence of central pair and outer doublet microtubules and incomplete or absent B tubules on the outer microtubules. Thus, in Tetrahymena, DYF-1 is needed for either assembly or stability of the entire axoneme. Our observations support the conserved function for DYF-1 in axoneme assembly or stability but also show that the consequences of loss of DYF-1 for axoneme segments are organism specific.Cilia are microtubule-rich cellular extensions that arise from basal bodies near the surfaces of most eukaryotic cell types. Defective cilia cause a wide variety of diseases, including polycystic kidney disease, primary ciliary dyskinesia, and retinal degeneration (3). A typical motile cilium has a microtubule-based framework, the axoneme, which contains nine outer (mostly doublet) microtubules and two central (singlet) microtubules. In most cilia, the axoneme can be subdivided into three segments: proximal (transition zone), middle (containing outer doublet microtubules), and distal (containing singlet extensions of peripheral microtubules). The outer doublet microtubules of the middle segment have a complete tubule A made of 13 protofilaments and an incomplete tubule B made of 11 protofilaments that is fused to the wall of the A tubule (36, 57). The outer microtubules in the distal segment lack the B tubule (32, 49). The distal segment also lacks dynein arms and radial spokes, and its microtubules are terminated by caps that are associated with the plasma membranes at the tips of cilia (11, 50). The distal segments are characterized by a high level of microtubule turnover, which could play a role in the regulation of the length of cilia (31).The mechanisms that establish the segmental subdivision of the axoneme are not well understood. Studies of Caenorhabditis elegans indicate that the distal segment is assembled using a mechanism that differs from the one utilized in the middle and proximal segments (54). In most cell types, ciliogenesis is dependent on the intraflagellar transport (IFT) pathway, a bidirectional motility of protein aggregates, known as IFT particles, that occurs along outer microtubules (10, 28, 29, 42). IFT particles are believed to provide platforms for transport of axonemal precursors (23, 44). The anterograde component of IFT that delivers cargo from the cell body to the tips of cilia is carried out by kinesin-2 motors (28, 63), whereas the cytoplasmic dynein DHC1b is responsible for the retrograde IFT (41, 43, 53). Importantly, in the well-studied amphid cilia of C. elegans, two distinct kinesin-2 complexes are involved in the anterograde IFT and differ in movement velocity: the “slow” heterotrimeric kinesin-II and the “fast” homodimeric OSM-3 kinesin (54). While kinesin-II and OSM-3 work redundantly to assemble the middle segment, OSM-3 alone functions in the assembly of the distal segment (39, 56).In C. elegans, DYF-1 is specifically required for assembly of the distal segment (39). In the DYF-1 mutant, the rate of IFT in the remaining middle segment is reduced to the level of the slow kinesin-II, suggesting that the Osm3 complex is nonfunctional and that kinesin-II functions alone in the middle segment. Thus, DYF-1 could either activate OSM-3 kinesin or dock OSM-3 to IFT particles (14, 39).However, a recent study of zebrafish has led to a different model for DYF-1 function. Zebrafish embryos that are homozygous for a loss of function of fleer, an ortholog of DYF-1, have shortened olfactory and pronephric cilia and ultrastructural defects in the axonemes. In the middle segment, the fleer axonemes have B tubules that are disconnected from the A tubule, indicating that DYF-1 functions in the middle segment and could play a role in the stability of doublet microtubules (40). Earlier, a similar mutant phenotype was reported in Tetrahymena for a mutation in the C-terminal tail domain of β-tubulin, at the glutamic acid residues that are used by posttranslational polymodifications (glycylation and glutamylation) (47). Glycylation (46) and glutamylation (12) are conserved polymeric posttranslational modifications that affect tubulin and are highly enriched on microtubules of axonemes and centrioles (reviewed in reference 20). Other studies have indicated that tubulin glutamylation contributes to the assembly and stability of axonemes and centrioles (4, 8). The fleer mutant zebrafish cilia have reduced levels of glutamylated tubulin (40). Pathak and colleagues proposed that the primary role of DYF-1/fleer is to serve as an IFT cargo adapter for a tubulin glutamic acid ligase (25) and that the effects of lack of function of DYF-1/fleer could be caused by deficiency in tubulin glutamylation in the axoneme (40). As an alternative hypothesis, the same authors proposed that DYF-1 is a structural component that stabilizes the doublet microtubules in the axoneme (40).Here, we evaluate the significance of a DYF-1 ortholog, Dyf1p, in Tetrahymena thermophila. Unexpectedly, we found that Tetrahymena cells lacking Dyf1p either fail to assemble an axoneme or can assemble an axoneme remnant. While our observations revealed major differences in the significance of DYF-1 for segmental differentiation in diverse models, it is clear that DYF-1 is a conserved and critical component that is required for assembly of the axoneme.  相似文献   
183.

Background

To support the development of early warning and surveillance systems of emerging zoonoses, we present a general method to prioritize pathogens using a quantitative, stochastic multi-criteria model, parameterized for the Netherlands.

Methodology/Principal Findings

A risk score was based on seven criteria, reflecting assessments of the epidemiology and impact of these pathogens on society. Criteria were weighed, based on the preferences of a panel of judges with a background in infectious disease control.

Conclusions/Significance

Pathogens with the highest risk for the Netherlands included pathogens in the livestock reservoir with a high actual human disease burden (e.g. Campylobacter spp., Toxoplasma gondii, Coxiella burnetii) or a low current but higher historic burden (e.g. Mycobacterium bovis), rare zoonotic pathogens in domestic animals with severe disease manifestations in humans (e.g. BSE prion, Capnocytophaga canimorsus) as well as arthropod-borne and wildlife associated pathogens which may pose a severe risk in future (e.g. Japanese encephalitis virus and West-Nile virus). These agents are key targets for development of early warning and surveillance.  相似文献   
184.
185.
Meat is an important source of animal protein but, at the same time, it includes saturated fatty acids, which makes it a potential cause of different cardiovascular diseases and still little is known about influence of age and sex on these parameters in roe deer muscles. The aim of this study was to determine the effect of age and sex on the CLA and other fatty acids content in the musculus longissimus lumborum in 67 roe deer (Capreolus capreolus L.). In the meat from the oldest individuals a higher content of CLA was noted (89.76 [mg/kg]) when compared to the fawns (42 [mg/kg]). In this research meat from roe deer does showed in general a higher percentage proportion of SFAs and MUFAs, but lower of PUFAs, than the meat from bucks. These results may provide an important source of information for consumers of roe deer meat because of differences between CLA and other fatty acids content depending on age and sex of the animals. Meat from roebucks is the most advantageous for dietary purposes.  相似文献   
186.
The study was performed to determine the structure and steroidogenic activity of granulosa cells derived from the germinal disc region, proximal region and distal region of the largest preovulatory ovarian follicle (F1) of the hen. The study was carried out on 34 Hy-Line Brown egg-laying hens aged 40 weeks. Morphology of the granulosa cells was studied by histological assessment and scanning electron microscopy. Moreover, the level of P4, histochemical activity of 3beta-HSD and expression of 3beta-HSD gene mRNA in granulosa cells of F1 follicle were determined. The findings indicate that the morphology and steroidogenic activity of the granulosa layer in F1 preovulatory ovarian follicle are associated with the region of the follicle. This is consistent with earlier studies. In the germinal disc region the granulosa cells form a multilayer while in the proximal and distal regions granulosa cells form a single layer. Analysis of P4 concentration revealed that its level in granulosa cells was markedly reduced closer to the germinal disc. Moreover, our study demonstrates for the first time the lower histochemical activity of 3beta-HSD and expression of 3beta-HSD mRNA in granulosa cells from the germinal disc region compared with the proximal and distal region.  相似文献   
187.
Proliferation of cerebellar granular neuronal precursors (CGNPs) is mediated by Sonic Hedgehog (Shh), which activates the Patched and Smoothened (Smo) receptor complex. Although its protein sequence suggests that Smo is a G protein coupled receptor (GPCR), the evidence that this receptor utilizes heterotrimeric G proteins as downstream effectors is controversial. In Drosophila, Gα(i) is required for Hedgehog (Hh) activity, but the involvement of heterotrimeric G proteins in vertebrate Shh signaling has not yet been established. Here, we show that Shh-induced proliferation of rat CGNPs is enhanced strongly by the expression of the active forms of Gα(i/o) proteins (Gα(i1), Gα(i2), Gα(i3), and Gα(o)) but not by members of another class (Gα(12)) of heterotrimeric G proteins. Additionally, the mRNAs of these different Gα(i) members display specific expression patterns in the developing cerebellum; only Gα(i2) and Gα(i3) are substantially expressed in the outer external granular layer, where CGNPs proliferate. Consistent with this, Shh-induced proliferation of CGNPs is reduced significantly by knockdowns of Gα(i2) and Gα(i3) but not by silencing of other members of the Gα(i/o) class. Finally, our results demonstrate that Gα(i2) and Gα(i3) locate to the primary cilium when expressed in CGNP cultures. In summary, we conclude that the proliferative effects of Shh on CGNPs are mediated by the combined activity of Gα(i2) and Gα(i3) proteins.  相似文献   
188.
Cyanamide is an allelochemical produced by hairy vetch (Vicia villosa Roth.). Its phyotoxic effect on plant growth was examined on roots of onion (Allium cepa L.) bulbs. Water solution of cyanamide (2-10 mM) restricted growth of onion roots in a dose-dependent manner. Treatment of onion roots with cyanamide resulted in a decrease in root growth rate accompanied by a decrease in accumulation of fresh and dry weight. The inhibitory effect of cyanamide was reversed by its removal from the environment, but full recovery was observed only for tissue treated with this chemical at low concentration (2-6 mM). Cytological observations of root tip cells suggest that disturbances in cell division may explain the strong cyanamide allelopathic activity. Moreover, in cyanamide-treated onion the following changes were detected: reduction of mitotic cells, inhibition of proliferation of meristematic cells and cell cycle, and modifications of cytoskeleton arrangement.  相似文献   
189.
Laminin-associated polypeptide 2 (LAP2) proteins are alternatively spliced products of a single gene; they belong to the LEM domain family and, in mammals, locate to the nuclear envelope (NE) and nuclear lamina. Isoforms lacking the transmembrane domain also locate to the nucleoplasm. We used new specific antibodies against the N-terminal domain of Xenopus LAP2 to perform immunoprecipitation, identification and localization studies during Xenopus development. By immunoprecipitation and mass spectrometry (LC/MS/MS), we identified the embryonic isoform XLAP2??, which was downregulated during development similarly to XLAP2??. Embryonic isoforms XLAP2?? and XLAP2?? were located in close association with chromatin up to the blastula stage. Later in development, both embryonic isoforms and the adult isoform XLAP2?? were localized in a similar way at the NE. All isoforms colocalized with lamin B2/B3 during development, whereas XLAP2?? was colocalized with lamin B2 and apparently with the F/G repeat nucleoporins throughout the cell cycle in adult tissues and culture cells. XLAP2?? was localized in clusters on chromatin, both at the NE and inside the nucleus. Embryonic isoforms were also localized in clusters at the NE of oocytes. Our results suggest that XLAP2 isoforms participate in the maintenance and anchoring of chromatin domains to the NE and in the formation of lamin B microdomains.  相似文献   
190.
Structure, function and membrane interactions of plant annexins: An update   总被引:1,自引:0,他引:1  
Knowledge accumulated over the past 15 years on plant annexins clearly indicates that this disparate group of proteins builds on the common annexin function of membrane association, but possesses divergent molecular mechanisms. Functionally, the current literature agrees on a key role of plant annexins in stress response processes such as wound healing and drought tolerance. This is contrasted by only few established details of the molecular level mechanisms that are driving these activities.In this review, we appraise the current knowledge of plant annexin molecular, functional and structural properties with a special emphasis on topics of less coverage in recent past overviews. In particular, plant annexin post-translational modification, roles in polar growth and membrane stabilisation processes are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号