首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1151篇
  免费   60篇
  1211篇
  2024年   1篇
  2023年   8篇
  2022年   19篇
  2021年   33篇
  2020年   16篇
  2019年   18篇
  2018年   35篇
  2017年   30篇
  2016年   46篇
  2015年   69篇
  2014年   68篇
  2013年   102篇
  2012年   86篇
  2011年   106篇
  2010年   58篇
  2009年   46篇
  2008年   61篇
  2007年   81篇
  2006年   67篇
  2005年   47篇
  2004年   43篇
  2003年   56篇
  2002年   46篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
排序方式: 共有1211条查询结果,搜索用时 25 毫秒
161.
Consumption of cranberries is known to exert positive health effects, especially against urinary tract infections. For this reason, presumably, they are widely used in folk medicine. Different aspects of cranberry phenolics activity were studied in individual papers but complex study in this matter is missing. The aim of the present study is to provide complex data concerning various aspects of cranberry extract activity. We studied the effects of subinhibitory concentrations of commercially available extract (?uravit S·O·S(?)) against two Escherichia coli strains isolated from urine of patients with pyelonephritis. Additionally the main extract anthocyanins were characterized. The activity of extract against lipid peroxidation and its radical scavenging ability were also assessed. ?uravit S·O·S(?) decreased the hydrophobicity of one of the studied E. coli strains, reduced swimming motility and adhesion to epithelial cells of both studied strains, it also limited the ability of bacteria to form biofilm. Expression of curli was not affected by cranberry extract, the assessment of P fimbriae expression was not reliable due to extract-induced agglutination of erythrocytes. Cranberry extract caused filamentation in both studied E. coli strains. It also showed pronounced antioxidant and radical scavenging properties. The properties of the studied cranberry extract show that it could be effectively used in prevention and/or elimination of urinary tract infections, specially the recurrent ones.  相似文献   
162.
Structural factors behind erm macrolide resistance were studied through synthesis of new macrolide derivates possessing truncated desosamine sugar moieties and subsequent determination of their antibacterial activity. Synthesized compounds with 2'-deoxy and 3'-desmethyl desosamine rings demonstrated decreased antibacterial activity on the native Staphylococcus aureus strain and were inactive against constitutively resistance S. aureus. The obtained results indicate that steric repulsion between the dimethylated A2058 and desosamine ring cannot be considered as a primary reason for erm-resistance.  相似文献   
163.
164.
165.
166.
Psoriasis is a common skin disease involving 1-4% of human population worldwide, of strong genetic background. The following cytokines are directly involved in psoriasis: TNF, IL-1, IL-2, IL-6, IL-7, IL-8, IL-15, IL-18, IL-19, IL-20, IL-23 whereas IL-4, IL-10, IL-12 as well as IL-11, IL-17 and IFN-gamma are rather indirectly engaged. This work is a review of some genetic factors and structure of selected cytokines and receptors and their genes location.  相似文献   
167.
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (~60 kDa) is processed into active BMP10 (~14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.  相似文献   
168.
In most cilia, the axoneme can be subdivided into three segments: proximal (the transition zone), middle (with outer doublet microtubules), and distal (with singlet extensions of outer doublet microtubules). How the functionally distinct segments of the axoneme are assembled and maintained is not well understood. DYF-1 is a highly conserved ciliary protein containing tetratricopeptide repeats. In Caenorhabditis elegans, DYF-1 is specifically needed for assembly of the distal segment (G. Ou, O. E. Blacque, J. J. Snow, M. R. Leroux, and J. M. Scholey. Nature. 436:583-587, 2005). We show that Tetrahymena cells lacking an ortholog of DYF-1, Dyf1p, can assemble only extremely short axoneme remnants that have structural defects of diverse natures, including the absence of central pair and outer doublet microtubules and incomplete or absent B tubules on the outer microtubules. Thus, in Tetrahymena, DYF-1 is needed for either assembly or stability of the entire axoneme. Our observations support the conserved function for DYF-1 in axoneme assembly or stability but also show that the consequences of loss of DYF-1 for axoneme segments are organism specific.Cilia are microtubule-rich cellular extensions that arise from basal bodies near the surfaces of most eukaryotic cell types. Defective cilia cause a wide variety of diseases, including polycystic kidney disease, primary ciliary dyskinesia, and retinal degeneration (3). A typical motile cilium has a microtubule-based framework, the axoneme, which contains nine outer (mostly doublet) microtubules and two central (singlet) microtubules. In most cilia, the axoneme can be subdivided into three segments: proximal (transition zone), middle (containing outer doublet microtubules), and distal (containing singlet extensions of peripheral microtubules). The outer doublet microtubules of the middle segment have a complete tubule A made of 13 protofilaments and an incomplete tubule B made of 11 protofilaments that is fused to the wall of the A tubule (36, 57). The outer microtubules in the distal segment lack the B tubule (32, 49). The distal segment also lacks dynein arms and radial spokes, and its microtubules are terminated by caps that are associated with the plasma membranes at the tips of cilia (11, 50). The distal segments are characterized by a high level of microtubule turnover, which could play a role in the regulation of the length of cilia (31).The mechanisms that establish the segmental subdivision of the axoneme are not well understood. Studies of Caenorhabditis elegans indicate that the distal segment is assembled using a mechanism that differs from the one utilized in the middle and proximal segments (54). In most cell types, ciliogenesis is dependent on the intraflagellar transport (IFT) pathway, a bidirectional motility of protein aggregates, known as IFT particles, that occurs along outer microtubules (10, 28, 29, 42). IFT particles are believed to provide platforms for transport of axonemal precursors (23, 44). The anterograde component of IFT that delivers cargo from the cell body to the tips of cilia is carried out by kinesin-2 motors (28, 63), whereas the cytoplasmic dynein DHC1b is responsible for the retrograde IFT (41, 43, 53). Importantly, in the well-studied amphid cilia of C. elegans, two distinct kinesin-2 complexes are involved in the anterograde IFT and differ in movement velocity: the “slow” heterotrimeric kinesin-II and the “fast” homodimeric OSM-3 kinesin (54). While kinesin-II and OSM-3 work redundantly to assemble the middle segment, OSM-3 alone functions in the assembly of the distal segment (39, 56).In C. elegans, DYF-1 is specifically required for assembly of the distal segment (39). In the DYF-1 mutant, the rate of IFT in the remaining middle segment is reduced to the level of the slow kinesin-II, suggesting that the Osm3 complex is nonfunctional and that kinesin-II functions alone in the middle segment. Thus, DYF-1 could either activate OSM-3 kinesin or dock OSM-3 to IFT particles (14, 39).However, a recent study of zebrafish has led to a different model for DYF-1 function. Zebrafish embryos that are homozygous for a loss of function of fleer, an ortholog of DYF-1, have shortened olfactory and pronephric cilia and ultrastructural defects in the axonemes. In the middle segment, the fleer axonemes have B tubules that are disconnected from the A tubule, indicating that DYF-1 functions in the middle segment and could play a role in the stability of doublet microtubules (40). Earlier, a similar mutant phenotype was reported in Tetrahymena for a mutation in the C-terminal tail domain of β-tubulin, at the glutamic acid residues that are used by posttranslational polymodifications (glycylation and glutamylation) (47). Glycylation (46) and glutamylation (12) are conserved polymeric posttranslational modifications that affect tubulin and are highly enriched on microtubules of axonemes and centrioles (reviewed in reference 20). Other studies have indicated that tubulin glutamylation contributes to the assembly and stability of axonemes and centrioles (4, 8). The fleer mutant zebrafish cilia have reduced levels of glutamylated tubulin (40). Pathak and colleagues proposed that the primary role of DYF-1/fleer is to serve as an IFT cargo adapter for a tubulin glutamic acid ligase (25) and that the effects of lack of function of DYF-1/fleer could be caused by deficiency in tubulin glutamylation in the axoneme (40). As an alternative hypothesis, the same authors proposed that DYF-1 is a structural component that stabilizes the doublet microtubules in the axoneme (40).Here, we evaluate the significance of a DYF-1 ortholog, Dyf1p, in Tetrahymena thermophila. Unexpectedly, we found that Tetrahymena cells lacking Dyf1p either fail to assemble an axoneme or can assemble an axoneme remnant. While our observations revealed major differences in the significance of DYF-1 for segmental differentiation in diverse models, it is clear that DYF-1 is a conserved and critical component that is required for assembly of the axoneme.  相似文献   
169.
Growth of tumors is strongly dependent upon supply of nutrients and oxygen by de novo formed blood vessels. Inhibiting angiogenesis suppresses growth of primary tumors as well and affects development of metastases. We demonstrate that recombinant MBP/vasostatin fusion protein inhibits proliferation of endothelial cells in vitro. The therapeutic usefulness of such intratumorally delivered recombinant protein was then assessed by investigating its ability to inhibit growth of experimental murine melanomas. In the model of B16-F10 melanoma the MBP/vasostatin construct significantly delayed tumor growth and prolonged survival of treated mice. A combination therapy involving MBP/vasostatin construct and cyclophosphamide was even more effective and led to further inhibition of the tumor growth and extended survival. We show that such combination might be useful in the clinical setting, especially to treat tumors which have already formed microvessel networks.  相似文献   
170.
Summary We analyzed DNA from 34 Polish and 63 Dutch cystic fibrosis (CF) patients and their families using the polymorphic markers XV2c and KM19, which are in linkage disequilibrium with the CF mutation. Strong linkage disequilibrium was found in the Dutch population sample, but the haplotypes of the Polish chromosomes showed a significantly less extreme disequilibrium. Our data and previous studies indicate that the highest degree of homogeneity of the CF defect and hence the best possible use of the XV2c/KM19/CF linkage disequilibrium for CF carrier detection/exclusion is in populations of northern European origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号