首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1120篇
  免费   91篇
  2023年   7篇
  2022年   14篇
  2021年   31篇
  2020年   16篇
  2019年   18篇
  2018年   35篇
  2017年   31篇
  2016年   44篇
  2015年   65篇
  2014年   66篇
  2013年   100篇
  2012年   83篇
  2011年   104篇
  2010年   56篇
  2009年   46篇
  2008年   52篇
  2007年   73篇
  2006年   62篇
  2005年   45篇
  2004年   41篇
  2003年   52篇
  2002年   45篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   7篇
  1995年   2篇
  1994年   6篇
  1993年   6篇
  1992年   8篇
  1991年   7篇
  1990年   5篇
  1989年   7篇
  1988年   5篇
  1987年   7篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   6篇
  1977年   2篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
  1965年   1篇
排序方式: 共有1211条查询结果,搜索用时 203 毫秒
11.
Pseudomonas aeruginosa JB2 was isolated from a polychlorinated biphenyl-contaminated soil by enrichment culture containing 2-chlorobenzoate as the sole carbon source. Strain JB2 was subsequently found also to grow on 3-chlorobenzoate, 2,3- and 2,5-dichlorobenzoates, 2,3,5-trichlorobenzoate, and a wide range of other mono- and dihalogenated benzoic acids. Cometabolism of 2,4-dichlorobenzoate was also observed. Chlorocatechols were the central intermediates of all chlorobenzoate catabolic pathways. Degradation of 2-chlorobenzoate was routed through 3-chlorocatechol, whereas 4-chlorocatechol was identified from the metabolism of both 2,3- and 2,5-dichlorobenzoate. The initial attack on chlorobenzoates was oxygen dependent and most likely mediated by dioxygenases. Although plasmids were not detected in strain JB2, spontaneous mutants were detected in 70% of glycerol-grown colonies. The mutants were all of the following phenotype: benzoate+, 3-chlorobenzoate+, 2-chlorobenzoate-, 2,3-dichlorobenzoate-, 2,5-dichlorobenzoate-. While chlorocatechols were oxidized by the mutants at wild-type levels, oxidation of 2-chloro- and 2,3- and 2,5-dichlorobenzoates was substantially diminished. These findings suggested that strain JB2 possessed, in addition to the benzoate dioxygenase, a halobenzoate dioxygenase that was necessary for the degradation of chlorobenzoates substituted in the ortho position.  相似文献   
12.
In agriculture, antibiotics are used for the treatment and prevention of livestock disease. Antibiotics perturb the bacterial gut composition but the extent of these changes and potential consequences for animal and human health is still debated. Six calves were housed in a controlled environment. Three animals received an injection of the antibiotic florfenicol (Nuflor), and three received no treatment. Faecal samples were collected at 0, 3 and 7 days, and bacterial communities were profiled to assess the impact of a therapy on the gut microbiota. Phylogenetic analysis (16S-rDNA) established that at day 7, antibiotic-treated microbiota showed a 10-fold increase in facultative anaerobic Escherichia spp, a signature of imbalanced microbiota, dysbiosis. The antibiotic resistome showed a high background of antibiotic resistance genes, which did not significantly change in response to florfenicol. However, the maintenance of Escherichia coli plasmid-encoded quinolone, oqxB and propagation of mcr-2, and colistin resistance genes were observed and confirmed by Sanger sequencing. The microbiota of treated animals was enriched with energy harvesting bacteria, common to obese microbial communities. We propose that antibiotic treatment of healthy animals leads to unbalanced, disease- and obese-related microbiota that promotes growth of E. coli carrying resistance genes on mobile elements, potentially increasing the risk of transmission of antibiotic resistant bacteria to humans.  相似文献   
13.
Vegetation History and Archaeobotany - The Eemian interglacial represents a natural experiment on how past vegetation with negligible human impact responded to amplified temperature changes...  相似文献   
14.
Diseases leading to terminal hepatic failure are among the most common causes of death worldwide. Transplant of the whole organ is the only effective method to cure liver failure. Unfortunately, this treatment option is not available universally due to the serious shortage of donors. Thus, alternative methods have been developed that are aimed at prolonging the life of patients, including hepatic cells transplantation and bridging therapy based on hybrid bioartificial liver devices. Parenchymal liver cells are highly differentiated and perform many complex functions, such as detoxification and protein synthesis. Unfortunately, isolated hepatocytes display a rapid decline in viability and liver‐specific functions. A number of methods have been developed to maintain hepatocytes in their highly differentiated state in vitro, amongst them the most promising being 3D growth scaffolds and decellularized tissues or coculture with other cell types required for the heterotypic cell‐cell interactions. Here we present a novel approach to the hepatic cells culture based on the feeder layer cells genetically modified using lentiviral vector to stably produce additional amounts of hepatocyte growth factor and show the positive influence of these coculture conditions on the preservation of the hepatic functions of the liver parenchymal cells' model—C3A cells.  相似文献   
15.

Introduction

Systemic sclerosis (SSc) is an autoimmune disease characterized by chronic inflammation, vascular injury and excessive fibrosis. CD163 is a scavenger receptor which affects inflammatory response and may contribute to connective tissue remodelling. It has recently been demonstrated that CD163 can bind and neutralize the TNF-like weak inducer of apoptosis (TWEAK), a multifunctional cytokine which regulates inflammation, angiogenesis and tissue remodelling. We aimed to investigate the relationships between serum levels of soluble CD163 (sCD163) and soluble TWEAK (sTWEAK) in relation to disease manifestations in SSc patients.

Methods

This study included 89 patients with SSc who had not received immunosuppressive drugs or steroids for at least 6 months and 48 age- and sex-matched healthy controls (HC) from four European centres. Serum concentrations of sTWEAK and sCD163 were measured using commercially available ELISA kits.

Results

The mean serum concentrations of sTWEAK were comparable between SSc patients (mean +/- SD: 270 +/- 171 pg/mL) and HC (294 +/- 147pg/mL, P >0.05). Concentration of sCD163 and sCD163/sTWEAK ratio were significantly greater in SSc patients (984 +/- 420 ng/mL and 4837 +/- 3103, respectively) as compared to HC (823 +/- 331 ng/mL and 3115 +/- 1346 respectively, P <0.05 for both). High sCD163 levels and a high sCD163/sTWEAK ratio (defined as > mean +2SD of HC) were both associated with a lower risk of digital ulcers in SSc patients (OR, 95%CI: 0.09; 0.01, 0.71, and 0.17; 0.06, 0.51, respectively). Accordingly, patients without digital ulcers had a significantly higher sCD163 concentration and sCD163/sTWEAK ratio as compared to SSc patients with digital ulcers (P <0.01 for both) and HC (P <0.05 for both). A high sCD163/sTWEAK ratio, but not high sCD163 levels, was associated with greater skin involvement.

Conclusions

The results of our study indicate that CD163-TWEAK interactions might play a role in the pathogenesis of SSc and that CD163 may protect against the development of digital ulcers in SSc. Further studies are required to reveal whether targeting of the CD163-TWEAK pathway might be a potential strategy for treating vascular disease and/or skin fibrosis in SSc.  相似文献   
16.
Hereditary nephrotic syndrome is caused by mutations in a number of different genes, the most common being NPHS2. The aim of the study was to identify the spectrum of NPHS2 mutations in Polish patients with the disease. A total of 141 children with steroid-resistant nephrotic syndrome (SRNS) were enrolled in the study. Mutational analysis included the entire coding sequence and intron boundaries of the NPHS2 gene. Restriction fragment length polymorphism (RFLP) and TaqMan genotyping assay were applied to detect selected NPHS2 sequence variants in 575 population-matched controls. Twenty patients (14 %) had homozygous or compound heterozygous NPHS2 mutations, the most frequent being c.1032delT found in 11 children and p.R138Q found in four patients. Carriers of the c.1032delT allele were exclusively found in the Pomeranian (Kashubian) region, suggesting a founder effect origin. The 14 % NPHS2 gene mutation detection rate is similar to that observed in other populations. The heterogeneity of mutations detected in the studied group confirms the requirement of genetic testing the entire NPHS2 coding sequence in Polish patients, with the exception of Kashubs, who should be initially screened for the c.1032delT deletion.  相似文献   
17.
18.
19.
Plant interactions with environmental factors cause changes in the metabolism and regulation of biochemical and physiological processes. Plant defense against pathogenic microorganisms depends on an innate immunity system that is activated as a result of infection. There are two mechanisms of triggering this system: basal immunity activated as a result of a perception of microbe-associated molecular patterns through pattern recognition receptors situated on the cell surface and effector-triggered immunity (ETI). An induced biosynthesis of bioactive secondary metabolites, in particular phytoalexins, is one of the mechanisms of plant defense to fungal infection. Results of the study on narrow leaf lupin (Lupinus angustifolius L.) plants infected with the anthracnose fungus Colletotrichum lupini and treated with fungal phytotoxic metabolites are described in the paper. The C. lupini phytotoxins were isolated from liquid cultures, purified and partially characterized with physicochemical methods. Accumulation of secondary metabolites on leaf surface and within the tissues of plants either infected, treated with the fungal phytotoxin or submitted to both treatments was studied using GC-MS and LC-MS, respectively. Substantial differences in isoflavone aglycones and glycoconjugate profiles occurred in response to different ways of plant treatment.  相似文献   
20.
Recombination is the main cause of genetic diversity. Thus, errors in this process can lead to chromosomal abnormalities. Recombination events are confined to narrow chromosome regions called hotspots in which characteristic DNA motifs are found. Genomic analyses have shown that both recombination hotspots and DNA motifs are distributed unevenly along human chromosomes and are much more frequent in the subtelomeric regions of chromosomes than in their central parts. Clusters of motifs roughly follow the distribution of recombination hotspots whereas single motifs show a negative correlation with the hotspot distribution. To model the phenomena related to recombination, we carried out computer Monte Carlo simulations of genome evolution. Computer simulations generated uneven distribution of hotspots with their domination in the subtelomeric regions of chromosomes. They also revealed that purifying selection eliminating defective alleles is strong enough to cause such hotspot distribution. After sufficiently long time of simulations, the structure of chromosomes reached a dynamic equilibrium, in which number and global distribution of both hotspots and defective alleles remained statistically unchanged, while their precise positions were shifted. This resembles the dynamic structure of human and chimpanzee genomes, where hotspots change their exact locations but the global distributions of recombination events are very similar.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号