首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1673篇
  免费   180篇
  2022年   12篇
  2021年   15篇
  2020年   17篇
  2019年   12篇
  2018年   15篇
  2017年   23篇
  2016年   28篇
  2015年   56篇
  2014年   70篇
  2013年   88篇
  2012年   107篇
  2011年   102篇
  2010年   77篇
  2009年   70篇
  2008年   96篇
  2007年   90篇
  2006年   91篇
  2005年   76篇
  2004年   89篇
  2003年   72篇
  2002年   76篇
  2001年   24篇
  2000年   13篇
  1999年   33篇
  1998年   32篇
  1997年   21篇
  1996年   28篇
  1995年   19篇
  1994年   16篇
  1993年   23篇
  1992年   18篇
  1991年   20篇
  1990年   19篇
  1989年   27篇
  1988年   27篇
  1987年   14篇
  1986年   16篇
  1985年   11篇
  1984年   24篇
  1983年   22篇
  1982年   13篇
  1981年   11篇
  1980年   16篇
  1979年   9篇
  1977年   9篇
  1975年   7篇
  1973年   16篇
  1970年   6篇
  1969年   6篇
  1968年   7篇
排序方式: 共有1853条查询结果,搜索用时 765 毫秒
81.
Cardiac triacylglycerol (TG) catabolism critically depends on the TG hydrolytic activity of adipose triglyceride lipase (ATGL). Perilipin 5 (Plin5) is expressed in cardiac muscle (CM) and has been shown to interact with ATGL and its coactivator comparative gene identification-58 (CGI-58). Furthermore, ectopic Plin5 expression increases cellular TG content and Plin5-deficient mice exhibit reduced cardiac TG levels. In this study we show that mice with cardiac muscle-specific overexpression of perilipin 5 (CM-Plin5) massively accumulate TG in CM, which is accompanied by moderately reduced fatty acid (FA) oxidizing gene expression levels. Cardiac lipid droplet (LD) preparations from CM of CM-Plin5 mice showed reduced ATGL- and hormone-sensitive lipase-mediated TG mobilization implying that Plin5 overexpression restricts cardiac lipolysis via the formation of a lipolytic barrier. To test this hypothesis, we analyzed TG hydrolytic activities in preparations of Plin5-, ATGL-, and CGI-58-transfected cells. In vitro ATGL-mediated TG hydrolysis of an artificial micellar TG substrate was not inhibited by the presence of Plin5, whereas Plin5-coated LDs were resistant toward ATGL-mediated TG catabolism. These findings strongly suggest that Plin5 functions as a lipolytic barrier to protect the cardiac TG pool from uncontrolled TG mobilization and the excessive release of free FAs.  相似文献   
82.
83.
84.
All influenza viral neuraminidases (NA) of both type A and B viruses have only one universally conserved sequence located between amino acids 222–230. A monoclonal antibody against this region has been previously reported to provide broad inhibition against all nine subtypes of influenza A NA; yet its inhibitory effect against influenza B viral NA remained unknown. Here, we report that the monoclonal antibody provides a broad inhibition against various strains of influenza B viruses of both Victoria and Yamagata genetic lineage. Moreover, the growth and NA enzymatic activity of two drug resistant influenza B strains (E117D and D197E) are also inhibited by the antibody even though these two mutations are conformationally proximal to the universal epitope. Collectively, these data suggest that this unique, highly-conserved linear sequence in viral NA is exposed sufficiently to allow access by inhibitory antibody during the course of infection; it could represent a potential target for antiviral agents and vaccine-induced immune responses against diverse strains of type B influenza virus.  相似文献   
85.
86.
ABSTRACT

Members of the casein kinase 1 (CK1) family are key regulators in numerous cellular signal transduction pathways and in order to prevent the development of certain diseases, CK1 kinase activity needs to be tightly regulated. Modulation of kinase activity by site-specific phosphorylation within the C-terminal regulatory domain of CK1δ has already been shown for several cellular kinases. By using biochemical methods, we now identified residues T161, T174, T176, and S181 within the kinase domain of CK1δ as target sites for checkpoint kinase 1 (Chk1). At least residues T176 and S181 show full conservation among CK1δ orthologues from different eukaryotic species. Enzyme kinetic analysis furthermore led to the hypothesis that site-specific phosphorylation within the kinase domain finally contributes to fine-tuning of CK1δ kinase activity. These data provide a basis for the extension of our knowledge about the role of site-specific phosphorylation for regulation of CK1δ and associated signal transduction pathways.  相似文献   
87.
88.
89.
Biological availability of selenosugars in rats   总被引:1,自引:0,他引:1  
The biological availability and metabolism of two selenosugars orally administered to rats were investigated. Two other selenium species, selenite and trimethylselenonium ion (TMSe) were included in the study as positive and negative controls, respectively. Male Wistar strain rats (three per group) at 8 weeks of age were exposed to sodium selenite, TMSe, selenosugar 1 (methyl-2-acetamido-2-deoxy-1-seleno-beta-D-galactopyranoside) or selenosugar 2 (methyl-2-acetamido-2-deoxy-1-seleno-beta-D-glucopyranoside) through drinking water for 48 h. Total selenium concentrations (ICPMS) and selenium species concentrations (HPLC/ICPMS) were determined in urine samples collected in two 24h periods during the exposure, and total selenium concentrations in liver, kidney, small intestine and blood were determined at the end of the experiment. The major species found in background urine were selenosugar 1 (major metabolite) and TMSe (minor metabolite). Rats exposed to selenite excreted large quantities of selenosugars and TMSe consistent with efficient uptake and biotransformation of selenite, whereas TMSe-exposed rats excreted large quantities of TMSe, but there was no significant increase of other selenium metabolites, consistent with TMSe being taken up and excreted unchanged. Rats exposed to selenosugars, however, excreted significant quantities of TMSe suggesting that the sugars were at least partly biologically available and biotransformed. Rats exposed to selenite accumulated selenium in the liver, kidney, small intestine and blood, whereas no accumulation was observed for the other samples except for small increases in selenium concentrations of small intestine from the two selenosugar-exposed groups.  相似文献   
90.
Signaling from rhombomeres 5 and 6 of the hindbrain is thought to be important for inner ear patterning. In Noggin −/− embryos, the gross anatomy of the inner ear is distorted and malformed, with cochlear duct outgrowth and coiling most affected. We attributed these defects to a caudal shift of the rhombomeres caused by the shortened body axis and the kink in the neural tube. To test the hypothesis that a caudal shift of the rhombomeres affects inner ear development, we surgically generated chicken embryos in which rhombomeres 5 and 6 were similarly shifted relative to the position of the inner ears, as in Noggin mutants. All chicken embryos with shifted rhombomeres showed defects in cochlear duct formation indicating that signaling from rhombomeres 5 and 6 is important for cochlear duct patterning in both chicken and mice. In addition, the size of the otic capsule is increased in Noggin −/− mutants, which most likely is due to unopposed BMP signaling for chondrogenesis in the peri-otic mesenchyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号