全文获取类型
收费全文 | 423篇 |
免费 | 52篇 |
专业分类
475篇 |
出版年
2022年 | 3篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 6篇 |
2018年 | 5篇 |
2017年 | 6篇 |
2016年 | 14篇 |
2015年 | 17篇 |
2014年 | 20篇 |
2013年 | 16篇 |
2012年 | 34篇 |
2011年 | 15篇 |
2010年 | 16篇 |
2009年 | 20篇 |
2008年 | 22篇 |
2007年 | 14篇 |
2006年 | 26篇 |
2005年 | 25篇 |
2004年 | 20篇 |
2003年 | 19篇 |
2002年 | 23篇 |
2001年 | 22篇 |
2000年 | 13篇 |
1999年 | 16篇 |
1998年 | 7篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1990年 | 11篇 |
1989年 | 3篇 |
1988年 | 5篇 |
1987年 | 7篇 |
1986年 | 2篇 |
1985年 | 7篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 3篇 |
1981年 | 5篇 |
1980年 | 3篇 |
1979年 | 3篇 |
1978年 | 4篇 |
1977年 | 4篇 |
1976年 | 3篇 |
1975年 | 3篇 |
1973年 | 1篇 |
1971年 | 2篇 |
1967年 | 1篇 |
排序方式: 共有475条查询结果,搜索用时 15 毫秒
91.
Matthias Gralle Michelle Gralle Botelho Fred S. Wouters 《The Journal of biological chemistry》2009,284(22):15016-15025
The amyloid precursor protein (APP) is implied both in cell growth and
differentiation and in neurodegenerative processes in Alzheimer disease.
Regulated proteolysis of APP generates biologically active fragments such as
the neuroprotective secreted ectodomain sAPPα and the neurotoxic
β-amyloid peptide. Furthermore, it has been suggested that the intact
transmembrane APP plays a signaling role, which might be important for both
normal synaptic plasticity and neuronal dysfunction in dementia. To understand
APP signaling, we tracked single molecules of APP using quantum dots and
quantitated APP homodimerization using fluorescence lifetime imaging
microscopy for the detection of Förster resonance energy transfer in
living neuroblastoma cells. Using selective labeling with synthetic
fluorophores, we show that the dimerization of APP is considerably higher at
the plasma membrane than in intracellular membranes. Heparan sulfate
significantly contributes to the almost complete dimerization of APP at the
plasma membrane. Importantly, this technique for the first time structurally
defines the initiation of APP signaling by binding of a relevant physiological
extracellular ligand; our results indicate APP as receptor for neuroprotective
sAPPα, as sAPPα binding disrupts APP dimers, and this disruption
of APP dimers by sAPPα is necessary for the protection of neuroblastoma
cells against starvation-induced cell death. Only cells expressing reversibly
dimerized wild-type, but not covalently dimerized mutant APP are protected by
sAPPα. These findings suggest a potentially beneficial effect of
increasing sAPPα production or disrupting APP dimers for neuronal
survival.The amyloid precursor protein
(APP)4 is known both
for its important role in the development and plasticity of the nervous system
(1–6)
and for its involvement in Alzheimer disease (AD)
(7,
8). Despite intensive research
efforts, the initial events that lead to the prevalent sporadic, i.e.
non-familial, forms of AD are still unclear. Furthermore, although a higher
gene dose of APP (9) or the
presence of pathological APP mutations is sufficient to induce familial AD
(for review, see Ref. 10), the
exact pathological mechanism that is triggered by APP is still under
debate.Some fragments of APP, such as the β-amyloid peptide (Aβ), are
thought to contribute to synaptic dysfunction and neurotoxicity
(11,
12). On the other hand, the
α-secretase-derived extracellular fragment of APP (sAPPα), which
is present at lower levels in AD patients than in controls
(13), has been shown to be
beneficial for memory function, to possess neuroprotective properties, and to
counteract the effects of Aβ
(14–18).Signaling by transmembrane APP may directly contribute to neurodegeneration
in AD
(19–24);
however, the signal transduction pathway for transmembrane APP remains
unknown, although several potential regulatory proteins, glycosaminoglycans,
and metal ions are known to bind with high affinity to APP and sAPPα
(25,
26). The most common form of
signal transduction for single-pass transmembrane proteins is the
ligand-induced perturbation of a monomer/dimer equilibrium. Indeed, the
dimerization of transmembrane APP has been implied several times in the past.
Several studies have investigated the effects of presumed dimer-breaking
perturbations on biological read-outs, such as the production of Aβ
(27,
28), but without directly
measuring the APP aggregation state, or have investigated the aggregation
state of APP subdomains, often reconstituted in cell-free systems
(27–32).
Dimerization interfaces in both the extracellular and the transmembrane domain
have been suggested.In the studies investigating the aggregation state of full-length APP, most
of the employed methods, such as chemical cross-linking and
co-immunoprecipitation, do not lend themselves readily to a rigorous
quantitative analysis of the abundance of potentially instable dimers
(31,
33), whereas in other cases
the use of chimeras may have influenced the dimerization potential or
precluded the search for a natural stimulus
(23,
34). The only previously
reported direct observation of APP dimerization by Förster resonance
energy transfer (FRET) microscopy uses an assay in which the FRET efficiency
varies with the level of overexpression
(35). Therefore, a
concentration-dependent FRET component due to nonspecific stochastic
encounters cannot be excluded in this study.Most importantly, as none of the published procedures permitted the
selective detection of APP dimers on the surface of live cells, where they
would encounter ligands, they could not differentiate between subpopulations
of APP. This may be one reason why no natural ligand of APP has ever been
shown to signal via modulation of its monomer/dimer equilibrium.Another elusive goal is the identity of the receptor for neuroprotective
sAPPα
(36–39).
The ligand-dependent dimerization of sAPPα in solution
(40) and its origination from
transmembrane APP suggest that APP might serve as receptor for sAPPα,
but this binding has never been experimentally shown. 相似文献
92.
Michaux C Muccioli GG Lambert DM Wouters J 《Bioorganic & medicinal chemistry letters》2006,16(18):4772-4776
Substituted (thio)hydantoins (2-thioxoimidazolidinones and imidazolidinediones) were reported as new potential reversible inhibitors of fatty acid amide hydrolase (FAAH). Their binding mode to FAAH was explored to rationalize their activity and give idea to design highly active inhibitors. Starting from the crystal structure of one of these molecules, docking studies provide us with rational basis for the design of new inhibitors within the thiohydantoin family. 相似文献
93.
Aggregated and highly phosphorylated tau protein is a pathological hallmark of Alzheimer's disease (AD) and other tauopathies. We identified motifs of alternating polar and apolar amino acids within the microtubule-binding repeats of tau which were interrupted by small breaking stretches. Minimal mutation of these breaking sequences yielded a unique instantly aggregating tau mutant containing longer stretches of polar/apolar amino acids without losing its microtubule-binding capacity. These modifications produced rapid aggregation and cytotoxicity with accompanying occurrence of pathologic tau phosphoepitopes (AT8, AT180, AT270, AT100, Ser(422), and PHF-1) and conformational epitopes (MC-1 and Alz50) in cells. Similar to pathological tau in the pretangle state, toxicity appeared to occur early without the requirement for extensive fibril formation. Thus, our mutant protein provides a novel platform for the investigation of the molecular mechanisms for toxicity and cellular behavior of pathologically aggregated tau proteins and the identification of its interaction partners. 相似文献
94.
de Ruyck J Durisotti V Oudjama Y Wouters J 《The Journal of biological chemistry》2006,281(26):17864-17869
Isopentenyl-diphosphate (IPP):dimethylallyl diphosphate isomerase is a key enzyme in the biosynthesis of isoprenoids. The mechanism of the isomerization reaction involves protonation of the unactivated carbon-carbon double bond in the substrate, but identity of the acidic moiety providing the proton is still not clear. Multiple sequence alignments and geometrical features observed in crystal structures of complexes with IPP isomerase suggest that Tyr-104 could play an important role during catalysis. A series of mutants was constructed by directed mutagenesis and characterized by enzymology. Crystallographic and thermal denaturation data for Y104A and Y104F mutants were obtained. Those data demonstrate the importance of residue Tyr-104 for proper folding of Escherichia coli type I IPP isomerase. 相似文献
95.
Proteins provide the building blocks for multicomponent molecular units, or pathways, from which higher cellular functions emerge. These units consist of either assemblies of physically interacting proteins or dispersed biochemical activities connected by rapidly diffusing second messengers, metabolic intermediates, ions or other proteins. It will probably remain within the realm of genetics to identify the ensemble of proteins that constitute these functional units and to establish the first-order connectivity. The dynamics of interactions within these protein machines can be assessed in living cells by the application of fluorescence spectroscopy on a microscopic level, using fluorescent proteins that are introduced within these functional units. Fluorescence is sensitive, specific and non-invasive, and the spectroscopic properties of a fluorescent probe can be analysed to obtain information on its molecular environment. The development and use of sensors based on the genetically encoded variants of green-fluorescent proteins has facilitated the observation of 'live' biochemistry on a microscopic level, with the advantage of preserving the cellular context of biochemical connectivity, compartmentalization and spatial organization. Protein activities and interactions can be imaged and localized within a single cell, allowing correlation with phenomena such as the cell cycle, migration and morphogenesis. 相似文献
96.
Mani P Grover Sara Ballouz Kaavya A Mohanasundaram Richard A George Craig D H Sherman Tamsyn M Crowley Merridee A Wouters 《BMC medical genomics》2014,7(Z1):S8
Background
Human genome sequencing has enabled the association of phenotypes with genetic loci, but our ability to effectively translate this data to the clinic has not kept pace. Over the past 60 years, pharmaceutical companies have successfully demonstrated the safety and efficacy of over 1,200 novel therapeutic drugs via costly clinical studies. While this process must continue, better use can be made of the existing valuable data. In silico tools such as candidate gene prediction systems allow rapid identification of disease genes by identifying the most probable candidate genes linked to genetic markers of the disease or phenotype under investigation. Integration of drug-target data with candidate gene prediction systems can identify novel phenotypes which may benefit from current therapeutics. Such a drug repositioning tool can save valuable time and money spent on preclinical studies and phase I clinical trials.Methods
We previously used Gentrepid (http://www.gentrepid.org) as a platform to predict 1,497 candidate genes for the seven complex diseases considered in the Wellcome Trust Case-Control Consortium genome-wide association study; namely Type 2 Diabetes, Bipolar Disorder, Crohn's Disease, Hypertension, Type 1 Diabetes, Coronary Artery Disease and Rheumatoid Arthritis. Here, we adopted a simple approach to integrate drug data from three publicly available drug databases: the Therapeutic Target Database, the Pharmacogenomics Knowledgebase and DrugBank; with candidate gene predictions from Gentrepid at the systems level.Results
Using the publicly available drug databases as sources of drug-target association data, we identified a total of 428 candidate genes as novel therapeutic targets for the seven phenotypes of interest, and 2,130 drugs feasible for repositioning against the predicted novel targets.Conclusions
By integrating genetic, bioinformatic and drug data, we have demonstrated that currently available drugs may be repositioned as novel therapeutics for the seven diseases studied here, quickly taking advantage of prior work in pharmaceutics to translate ground-breaking results in genetics to clinical treatments.97.
Dale G. Nimmo Sarah Avitabile Sam C. Banks Rebecca Bliege Bird Kate Callister Michael F. Clarke Chris R. Dickman Tim S. Doherty Don A. Driscoll Aaron C. Greenville Angie Haslem Luke T. Kelly Sally A. Kenny Jos J. Lahoz‐Monfort Connie Lee Steven Leonard Harry Moore Thomas M. Newsome Catherine L. Parr Euan G. Ritchie Kathryn Schneider James M. Turner Simon Watson Martin Westbrooke Mike Wouters Matthew White Andrew F. Bennett 《Biological reviews of the Cambridge Philosophical Society》2019,94(3):981-998
Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire‐prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer‐term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire‐prone ecosystems. 相似文献
98.
Femkje A. M. Jonker Job C. J. Calis Kamija Phiri Rob J. Kraaijenhagen Bernard J. Brabin Brian Faragher Erwin T. Wiegerinck Harold Tjalsma Dorine W. Swinkels Michael Boele van Hensbroek 《PloS one》2013,8(12)
Introduction
A reliable diagnostic biomarker of iron status is required for severely anemic children living in malarious areas because presumptive treatment with iron may increase their infection risk if they are not iron deficient. Current biomarkers are limited because they are altered by host inflammation. In this study hepcidin concentrations were assessed in severely anemic children living in a highly malarious area of Malawi and evaluated against bone marrow iron in order to determine the usefulness of hepcidin as a point of care test.Methods
207 severely anemic children were assessed for levels of hepcidin, ferritin, serum transferrin receptor, erythropoietin, hematological indices, C-reactive protein, interleukin-6, malaria parasites and HIV infection. Deficiency of bone marrow iron stores was graded and erythroblast iron incorporation estimated. Interaction of covariates was assessed by structural-equation-modeling.Results and Conclusion
Hepcidin was a poor predictor of bone marrow iron deficiency (sensitivity 66.7%; specificity 48.5%), and of iron incorporation (sensitivity 54.2%; specificity 61.8%), and therefore would have limitations as a point of care test in this category of children. As upregulation of hepcidin by inflammation and iron status was blunted by erythropoietin in this population, enhanced iron absorption through the low hepcidin values may increase infection risk. Current recommendations to treat all severely anemic children living in malarious areas with iron should therefore be reconsidered. 相似文献99.
Jans F Ameloot M Wouters P Steels P 《Canadian journal of physiology and pharmacology》2008,86(1-2):36-45
The cellular pathophysiology of renal ischemia-reperfusion injury was investigated in primary cell cultures from rabbit medullary thick ascending limb (MTAL). Metabolic inhibition (MI) was achieved with cyanide and 2-deoxyglucose. Sixty minutes of MI caused a profound but reversible decrease in intracellular concentration of ATP ([ATP]i). Intracellular pH (pHi) first decreased after initiation of MI, followed by a transient alkalinization. When [ATP]i reached its lowest value (<1% of control), the cells slowly acidified to reach a stable pHi of 6.92 after 50 min of MI. In the presence of EIPA (10 micromol/L), the pattern of changes in pHi was unchanged and acidification was not increased, indicating that the Na+/H+ exchangers were inactive during ATP depletion. When inorganic phosphate (P(i)) or Na+ was omitted from the apical solutions during MI, the transient alkalinization was no longer observed and the cytosol slowly acidified. Experiments on Na+-dependent alkalinizations revealed the presence of a Na-P(i) cotransporter in the apical cell membrane. With indirect immunofluorescence, the Na-P(i) cotransporter expressed in these primary cell cultures could be identified as Na-P(i) type I. Although the exact physiological role of Na-P(i) type I still is unresolved, these experiments demonstrate that apical Na-P(i) type I activity is increased at the onset of ATP depletion in MTAL cells. 相似文献
100.
G. Wouters 《Experimental & applied acarology》1990,10(1):69-76
In the Eastern Province of Zambia,Rhipicephalus appendiculatus (Neumann) andR. zambeziensis (Walker) are sympatric. Intermediate forms as well as typical specimens are found. No morphological criteria could detect cross-breeding between these species in the field.Hybrids betweenR. appendiculatus andR. zambeziensis were produced and glucose-phosphate-isomerase (EC 5.3.1.9.; GPI) isoenzymes resolved by agarose electrophoresis. Phenotyping hybrids in the F1 and F2 generations was explained by the autosomal transmission of two loci of GPI-genes. Identification of some hybrid phenotypes offers the possibility of showing presently undetected hybridization in the field. A genetic model is proposed to explain the patterns. 相似文献