首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   28篇
  397篇
  2023年   3篇
  2022年   3篇
  2021年   8篇
  2020年   7篇
  2019年   7篇
  2018年   6篇
  2017年   8篇
  2016年   14篇
  2015年   18篇
  2014年   19篇
  2013年   19篇
  2012年   29篇
  2011年   20篇
  2010年   12篇
  2009年   14篇
  2008年   22篇
  2007年   19篇
  2006年   13篇
  2005年   8篇
  2004年   17篇
  2003年   11篇
  2002年   10篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1997年   4篇
  1991年   5篇
  1988年   3篇
  1987年   5篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1975年   3篇
  1973年   4篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1964年   4篇
  1939年   2篇
  1937年   3篇
  1931年   2篇
  1930年   2篇
  1928年   3篇
  1922年   3篇
  1914年   1篇
排序方式: 共有397条查询结果,搜索用时 15 毫秒
251.
252.
253.
B-cell receptor (BCR) engagement with surface-tethered antigens leads to the formation of an immune synapse, which facilitates antigen uptake for presentation to T-lymphocytes. Antigen internalization and processing rely on the early dynein-dependent transport of BCR–antigen microclusters to the synapse center, as well as on the later polarization of the microtubule-organizing center (MTOC). MTOC repositioning allows the release of proteases and the delivery of MHC class II molecules at the synapse. Whether and how these events are coordinated have not been addressed. Here we show that the ancestral polarity protein Par3 promotes BCR–antigen microcluster gathering, as well as MTOC polarization and lysosome exocytosis, at the synapse by facilitating local dynein recruitment. Par3 is also required for antigen presentation to T-lymphocytes. Par3 therefore emerges as a key molecule in the coupling of the early and late events needed for efficient extraction and processing of immobilized antigen by B-cells.  相似文献   
254.
We have compiled an extensive database of archaeological evidence for rice across Asia, including 400 sites from mainland East Asia, Southeast Asia and South Asia. This dataset is used to compare several models for the geographical origins of rice cultivation and infer the most likely region(s) for its origins and subsequent outward diffusion. The approach is based on regression modelling wherein goodness of fit is obtained from power law quantile regressions of the archaeologically inferred age versus a least-cost distance from the putative origin(s). The Fast Marching method is used to estimate the least-cost distances based on simple geographical features. The origin region that best fits the archaeobotanical data is also compared to other hypothetical geographical origins derived from the literature, including from genetics, archaeology and historical linguistics. The model that best fits all available archaeological evidence is a dual origin model with two centres for the cultivation and dispersal of rice focused on the Middle Yangtze and the Lower Yangtze valleys.  相似文献   
255.
256.
In Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family. Here, we demonstrate an unexpected role for Pex3 proteins in peroxisome inheritance. Both Pex3p and Pex3Bp are peroxisomal integral membrane proteins that function as peroxisomal receptors for class V myosin through direct interaction with the myosin globular tail. In cells lacking Pex3Bp, peroxisomes are preferentially retained by the mother cell, whereas most peroxisomes gather and are transferred en masse to the bud in cells overexpressing Pex3Bp or Pex3p. Our results reveal an unprecedented role for members of the Pex3 protein family in peroxisome motility and inheritance in addition to their well-established role in peroxisome biogenesis at the endoplasmic reticulum. Our results point to a temporal link between peroxisome formation and inheritance and delineate a general mechanism of peroxisome inheritance in eukaryotic cells.  相似文献   
257.
In addition to cholesterol-lowering properties, statins exhibit lipid-independent immunomodulatory, anti-inflammatory actions. However, high concentrations are typically required to induce these effects in vitro, raising questions concerning therapeutic relevance. We present evidence that endothelial cell sensitivity to statins depends upon shear stress. Using heme oxygenase-1 expression as a model, we demonstrate differential heme oxygenase-1 induction by atorvastatin in atheroresistant compared with atheroprone sites of the murine aorta. In vitro, exposure of human endothelial cells to laminar shear stress significantly reduced the statin concentration required to induce heme oxygenase-1 and protect against H2O2-mediated injury. Synergy was observed between laminar shear stress and atorvastatin, resulting in optimal expression of heme oxygenase-1 and resistance to oxidative stress, a response inhibited by heme oxygenase-1 small interfering RNA. Moreover, treatment of laminar shear stress-exposed endothelial cells resulted in a significant fall in intracellular cholesterol. Mechanistically, synergy required Akt phosphorylation, activation of Kruppel-like factor 2, NF-E2-related factor-2 (Nrf2), increased nitric-oxide synthase activity, and enhanced HO-1 mRNA stability. In contrast, heme oxygenase-1 induction by atorvastatin in endothelial cells exposed to oscillatory flow was markedly attenuated. We have identified a novel relationship between laminar shear stress and statins, demonstrating that atorvastatin-mediated heme oxygenase-1-dependent antioxidant effects are laminar shear stress-dependent, proving the principle that biomechanical signaling contributes significantly to endothelial responsiveness to pharmacological agents. Our findings suggest statin pleiotropy may be suboptimal at disturbed flow atherosusceptible sites, emphasizing the need for more specific therapeutic agents, such as those targeting Kruppel-like factor 2 or Nrf2.The efficacy of 3-hydroxy-3-methylglutaryl-coenzyme A reductase antagonists (statins) in reducing low density lipoprotein cholesterol, cardiovascular morbidity, and mortality is widely recognized (1). The observation that beneficial actions of statins on vascular function are detectable prior to any fall in serum cholesterol, extend to normocholesterolemic patients and exceed those of other lipid-lowering drugs despite comparable falls in total cholesterol (2, 3), suggest the existence of low density lipoprotein-cholesterol-independent effects (4, 5). Judging from in vitro studies, these may include immunomodulatory, anti-inflammatory, anti-adhesive, anti-thrombotic, and cytoprotective actions (6). However, the experimental work demonstrating these pleiotropic effects has predominantly used statin concentrations exceeding those achieved by therapeutic dosing, raising questions concerning clinical relevance (4).Heme oxygenase-1 (HO-1)2 acts as the rate-limiting factor in the catabolism of heme into biliverdin, releasing free iron and carbon monoxide (CO). Biliverdin is subsequently converted to bilirubin by biliverdin reductase, whereas intracellular iron induces expression of heavy chain-ferritin and the opening of Fe2+ export channels (7). The biologic activity of HO-1 represents an important adaptive response in cellular homeostasis, as revealed by widespread inflammation and persistent endothelial injury in human HO-1 deficiency (8).Expression of HO-1 in atherosclerotic lesions, and its ability to inhibit vascular smooth muscle cell proliferation, exert anti-inflammatory, antioxidant, and antithrombotic effects, suggests a protective role during atherogenesis (9, 10). HMOX1 promoter polymorphisms affecting HO-1 expression may influence susceptibility to intimal hyperplasia and coronary artery disease, whereas a low serum bilirubin constitutes a cardiovascular risk factor (11). Moreover, overexpression of HO-1 inhibited atherogenesis, whereas Hmox1/ mice bred onto an ApoE−/− background developed more extensive and complex atherosclerotic plaques (12, 13).Recent interest has focused on the therapeutic potential of HO-1 and its products, with probucol, statins, rapamycin, nitric oxide donors, and aspirin being shown to induce HO-1 (reviewed in Ref. 10). Indeed, induction of HO-1 may represent an important component of the vasculoprotective profile of statins, with simvastatin, atorvastatin, and rosuvastatin variously shown to increase HMOX1 promoter activity and mRNA levels, to induce enzyme activity and increase antioxidant capacity in human endothelial cells (EC) (1418). However, induction of HO-1 in vascular EC in vivo has not yet been demonstrated.Vascular endothelium exposed to unidirectional, pulsatile laminar shear stress (LSS) >10 dynes/cm2 is relatively protected against atherogenesis. LSS increases nitric oxide (NO) biosynthesis, prolongs EC survival, and generates an anticoagulant, anti-adhesive cell surface. In contrast, endothelium exposed to disturbed blood flow, with low shear reversing or oscillatory flow patterns, such as that located at arterial branch points and curvatures, is atheroprone. Thus endothelial cells exposed to disturbed blood flow exhibit reduced levels of endothelial nitric-oxide synthase (eNOS), increased apoptosis, oxidative stress, permeability to low density lipoprotein, and leukocyte adhesion (19).The atheroprotective influence of unidirectional LSS and the overlap between these actions and those of statins led us to hypothesize that LSS increases endothelial responsiveness to statins. We demonstrate for the first time that treatment of mice with atorvastatin induces HO-1 expression in the aortic endothelium and that this occurs preferentially at sites exposed to LSS. In vitro, pre-conditioning human EC with an atheroprotective, but not an atheroprone waveform, significantly reduces the concentration of atorvastatin required to enhance HO-1-mediated cytoprotection against oxidant-induced injury. A synergistic relationship between LSS and statins is revealed, resulting in maximal Akt phosphorylation and dependence upon eNOS, Kruppel-like factor 2 (KLF2), and NF-E2-related factor-2 (Nrf2) activation.  相似文献   
258.
Hypoxia, which leads to dysfunctional cell metabolism, and complement activation both play central roles in the pathogenesis of rheumatoid arthritis (RA). Recent studies have reported that mice deficient for the complement-inhibitory protein CD59 show enhanced susceptibility to antigen-induced arthritis and reported that statins have anti-inflammatory effects in RA. We hypothesized that the anti-inflammatory effect of statins in RA relates in part to their ability to increase CD59 expression in hypoxic conditions and therefore to reduce complement activation.  相似文献   
259.
The renin-angiotensin-aldosterone system (RAAS) appears to contribute significantly to osmoregulation of fasting northern elephant seal (Mirounga angustirostris) pups; however, RAAS has not been characterized in fasting adult seals. Therefore, this study examined the contribution of RAAS to water turnover rates in fasting adult male northern elephant seals. Blood samples were obtained twice during their breeding fast at an interval of 6.5 wk, and water efflux rate was estimated by isotopic dilution during the same period. Serum electrolytes (Na+, K+, Cl-) and osmolality were unaltered between the two sampling periods, indicating ionic and osmotic homeostasis during the fast. Despite the lack of an increase in vasopressin, serum angiotensin II and aldosterone were increased and were significantly and positively correlated. Changes in aldosterone concentration and water efflux rate were significantly and negatively correlated, suggesting that the greater the increase in aldosterone, the smaller the loss of water. Adult male seals maintain ionic and osmotic homeostasis similar to that of fasting weaned pups, and this homeostasis appears to be mediated, at least in part, by RAAS, which probably contributes to increased water retention as well. The hormonal mechanisms by which northern elephant seals maintain water and electrolyte balance during fasting conditions appear to be similar regardless of age.  相似文献   
260.

Background  

Iron is an important micronutrient for all living organisms. Almost 25% of the world population is affected by iron deficiency, a leading cause of anemia. In plants, iron deficiency leads to chlorosis and reduced yield. Both animals and plants may suffer from iron deficiency when their diet or environment lacks bioavailable iron. A sustainable way to reduce iron malnutrition in humans is to develop staple crops with increased content of bioavailable iron. Knowledge of where and how iron accumulates in seeds of crop plants will increase the understanding of plant iron metabolism and will assist in the production of staples with increased bioavailable iron.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号