首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   51篇
  2024年   2篇
  2023年   3篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2019年   6篇
  2018年   12篇
  2017年   6篇
  2016年   14篇
  2015年   33篇
  2014年   30篇
  2013年   37篇
  2012年   38篇
  2011年   46篇
  2010年   29篇
  2009年   37篇
  2008年   33篇
  2007年   29篇
  2006年   24篇
  2005年   30篇
  2004年   21篇
  2003年   15篇
  2002年   26篇
  2001年   4篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   2篇
  1989年   2篇
  1988年   3篇
  1984年   2篇
  1983年   2篇
  1981年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1971年   8篇
  1970年   4篇
  1968年   2篇
  1965年   2篇
  1961年   1篇
  1960年   1篇
  1959年   1篇
  1956年   2篇
  1953年   1篇
  1952年   1篇
排序方式: 共有564条查询结果,搜索用时 31 毫秒
521.
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.  相似文献   
522.
523.
The FNT (formate-nitrite transporters) form a superfamily of pentameric membrane channels that translocate monovalent anions across biological membranes. FocA (formate channel A) translocates formate bidirectionally but the mechanism underlying how translocation of formate is controlled and what governs substrate specificity remains unclear. Here we demonstrate that the normally soluble dimeric enzyme pyruvate formate-lyase (PflB), which is responsible for intracellular formate generation in enterobacteria and other microbes, interacts specifically with FocA. Association of PflB with the cytoplasmic membrane was shown to be FocA dependent and purified, Strep-tagged FocA specifically retrieved PflB from Escherichia coli crude extracts. Using a bacterial two-hybrid system, it could be shown that the N-terminus of FocA and the central domain of PflB were involved in the interaction. This finding was confirmed by chemical cross-linking experiments. Using constraints imposed by the amino acid residues identified in the cross-linking study, we provide for the first time a model for the FocA–PflB complex. The model suggests that the N-terminus of FocA is important for interaction with PflB. An in vivo assay developed to monitor changes in formate levels in the cytoplasm revealed the importance of the interaction with PflB for optimal translocation of formate by FocA. This system represents a paradigm for the control of activity of FNT channel proteins.  相似文献   
524.
We report the design, synthesis and properties of spiroindane based compound 1, a potent, selective, orally bioavailable, non-peptide melanocortin subtype-4 receptor agonist. Compound 1 shows excellent erectogenic activity in the rodent models.  相似文献   
525.
526.
Haberlea rhodopensis is a homoiochlorophyllous desiccation-tolerant plant growing mostly in shaded rock rifts below the trees at very low light intensity. These shade plants are very sensitive to photoinhibition and do not survive desiccation at irradiance of 350 μmol m?2 s?1, whereas plants growing on the top of rocks exposed to full sunlight (sun plants) can survive at even higher light intensities regularly. The aim of the present study was to establish how acclimation to different light intensities influences the expression of selected drought-responsive genes and the physiological activity during desiccation of shade and sun plants under controlled culture conditions. The photosynthetic activity was higher in sun plants not only when fully hydrated but also during dehydration. Thus, the higher photosynthetic capacity, reflected in PSII but especially in PSI activity, is accompanied by a reduced susceptibility to photodamage. For most of the genes examined, drought was the main factor in regulation; in addition, some were light modulated like genes coding for putative superoxide dismutase (SOD), ascorbate peroxidase (APX) and thioredoxin (TRX), whereby the former was almost purely light regulated. Differences between sun and shade plants concerned mainly on the time course. Whereas some genes reacted already at moderate desiccation only in sun plants (genes for monodehydroascorbate reductase (MDAR), plastidic translocase (PTL) similar to OEP16 and one of the genes, newly annotated ELIP-like, specific for H. rhodopensis), especially a gene for a putative UDP-glucuronic acid decarboxylase (UDP) retained its enhanced expression longer during recovery. Thus, these genes are probably especially important for survival and recovery in sun plants.  相似文献   
527.
528.
Multiple transporters mediate osmoregulatory solute accumulation in Escherichia coli K-12. The larger genomes of naturally occurring strains such as pyelonephritis isolates CFT073 and HU734 may encode additional osmoregulatory systems. CFT073 is more osmotolerant than HU734 in the absence of organic osmoprotectants, yet both strains grew in high osmolality medium at low K(+) (micromolar concentrations) and retained locus trkH, which encodes an osmoregulatory K(+) transporter. Both lacked the trkH homologue trkG. Transporters ProP and ProU account for all glycine-betaine uptake activity in E. coli K-12 and CFT073, but not in HU734, yet elimination of ProP and ProU impairs the growth of HU734, but not CFT073, in high osmolality human urine. No known osmoprotectant stimulated the growth of CFT073 in high osmolality minimal medium, but putative transporters YhjE, YiaMNO, and YehWXYZ may mediate uptake of additional osmoprotectants. Gene betU was isolated from HU734 by functional complementation and shown to encode a betaine uptake system that belongs to the betaine-choline-carnitine transporter family. The incidence of trkG and betU within the ECOR collection, representatives of the E. coli pathotypes (PATH), and additional strains associated with urinary tract infection (UTI) were determined. Gene trkG was present in 66% of the ECOR collection but only in 16% of the PATH and UTI collections. Gene betU was more frequently detected in ECOR groups B2 and D (50% of isolates) than in groups A, B1, and E (20%), but it was similar in overall incidence in the ECOR collection and in the combined UTI and PATH collections (32 and 34%, respectively). Genes trkG and betU may have been acquired by lateral gene transfer, since trkG is part of the rac prophage and betU is flanked by putative insertion sequences. Thus, BetU and TrkG contribute, with other systems, to the osmoregulatory capacity of the species E. coli, but they are not characteristic of a particular phylogenetic group or pathotype.  相似文献   
529.
Osteogenesis imperfecta (OI) is a hereditary disease occurring in humans and dogs. It is characterized by extremely fragile bones and teeth. Most human and some canine OI cases are caused by mutations in the COL1A1 and COL1A2 genes encoding the subunits of collagen I. Recently, mutations in the CRTAP and LEPRE1 genes were found to cause some rare forms of human OI. Many OI cases exist where the causative mutation has not yet been found. We investigated Dachshunds with an autosomal recessive form of OI. Genotyping only five affected dogs on the 50 k canine SNP chip allowed us to localize the causative mutation to a 5.82 Mb interval on chromosome 21 by homozygosity mapping. Haplotype analysis of five additional carriers narrowed the interval further down to 4.74 Mb. The SERPINH1 gene is located within this interval and encodes an essential chaperone involved in the correct folding of the collagen triple helix. Therefore, we considered SERPINH1 a positional and functional candidate gene and performed mutation analysis in affected and control Dachshunds. A missense mutation (c.977C>T, p.L326P) located in an evolutionary conserved domain was perfectly associated with the OI phenotype. We thus have identified a candidate causative mutation for OI in Dachshunds and identified a fifth OI gene.  相似文献   
530.
During purification of recombinant Interleukin-2 (rIL-2) by reversed-phase HPLC, early fractions are discarded due to the presence of an unidentified form of rIL-2. A procedure has been developed to isolate and purify this unidentified form of rIL-2. The purification process involves two chromatography steps and utilizes a Bakerbond Carboxy-Sulfon (CS) column under two different conditions. This material, designated as a high-molecular-weight form of rIL-2 (HMWrIL-2), exhibits lower mobility during SDS-PAGE and has apI which is approximately one unit less than that of rIL-2, but has similar bioactivity to rIL-2. Structural analysis through enzymatic cleavage, HPLC peptide mapping, mass spectrometry, sequencing, and amino acid composition revealed that the difference between these two proteins is a C-terminal extension of 11 amino acids. This extension could be the result of a nonstandard translation event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号