首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   32篇
  2022年   7篇
  2021年   8篇
  2019年   6篇
  2017年   8篇
  2016年   10篇
  2015年   13篇
  2014年   14篇
  2013年   17篇
  2012年   23篇
  2011年   27篇
  2010年   10篇
  2009年   23篇
  2008年   17篇
  2007年   22篇
  2006年   12篇
  2005年   14篇
  2004年   11篇
  2003年   14篇
  2002年   13篇
  2001年   8篇
  2000年   11篇
  1999年   10篇
  1998年   4篇
  1997年   5篇
  1996年   8篇
  1994年   5篇
  1993年   8篇
  1992年   9篇
  1990年   4篇
  1988年   5篇
  1987年   9篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1979年   3篇
  1975年   4篇
  1974年   3篇
  1971年   4篇
  1969年   2篇
  1966年   3篇
  1964年   2篇
  1962年   2篇
  1915年   2篇
  1908年   2篇
  1905年   3篇
  1899年   3篇
  1897年   2篇
  1892年   2篇
  1889年   2篇
排序方式: 共有447条查询结果,搜索用时 15 毫秒
61.
Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacterium Bacillus anthracis. Human infection occurs after the ingestion, inhalation, or cutaneous inoculation of B. anthracis spores. The subsequent progression of the disease is largely mediated by two native virulence plasmids, pXO1 and pXO2, and is characterized by septicemia, toxemia, and meningitis. In order to produce meningitis, blood-borne bacteria must interact with and breach the blood-brain barrier (BBB) that is composed of a specialized layer of brain microvascular endothelial cells (BMEC). We have recently shown that B. anthracis Sterne is capable of penetrating the BBB in vitro and in vivo, establishing the classic signs of meningitis; however, the molecular mechanisms underlying the central nervous system (CNS) tropism are not known. Here, we show that attachment to and invasion of human BMEC by B. anthracis Sterne is mediated by the pXO1 plasmid and an encoded envelope factor, BslA. The results of studies using complementation analysis, recombinant BslA protein, and heterologous expression demonstrate that BslA is both necessary and sufficient to promote adherence to brain endothelium. Furthermore, mice injected with the BslA-deficient strain exhibited a significant decrease in the frequency of brain infection compared to mice injected with the parental strain. In addition, BslA contributed to BBB breakdown by disrupting tight junction protein ZO-1. Our results identify the pXO1-encoded BslA adhesin as a critical mediator of CNS entry and offer new insights into the pathogenesis of anthrax meningitis.Bacillus anthracis, the etiologic agent of anthrax, is a gram-positive spore-forming bacterium that is commonly found in soil (29). The bacterium can infect animals and humans by ingestion, inhalation, or cutaneous inoculation of B. anthracis spores (8). Spores are taken up by resident macrophages that migrate to the lymph nodes (15). Here, the spores germinate into vegetative bacteria, multiply, and then disseminate throughout the host, causing septicemia and toxemia (8). Systemic disease can be complicated by the onset of a fulminant and rapidly fatal hemorrhagic meningitis and meningoencephalitis (27). Anthrax meningitis is associated with a high mortality rate despite intensive antibiotic therapy (24). Biopsy studies after an outbreak of inhalational anthrax and experimental studies of inhalational infection in rhesus monkeys demonstrated the presence of bacilli in the central nervous system (CNS) and pathologies consistent with suppurative and hemorrhagic meningitis in the majority of cases (1, 12). The intentional release of B. anthracis spores (19) during the 2001 bioterrorism event resulted in a case of meningitis (19), necessitating a need for a better understanding of the pathogenesis of anthrax meningitis and CNS infection.To cause meningitis, blood-borne bacteria must interact with and breach the blood-brain barrier (BBB). The majority of the BBB is anatomically represented by the cerebral microvascular endothelium; brain microvascular endothelial cells (BMEC) are joined by tight junctions and display a paucity of pinocytosis, thereby effectively limiting the passage of substances and maintaining the CNS microenvironment (4, 5). Despite its highly restrictive nature, certain bacterial pathogens are still able to penetrate the BBB and gain entry into the CNS. The presence of bacilli in the brains of patients (1, 24) and in experimental models of anthrax infection (42, 44) suggests that vegetative B. anthracis cells are able to cross the BBB to initiate meningeal inflammation and the classic pathology associated with meningitis.B. anthracis harbors two large virulence plasmids, pXO1 and pXO2 (8), which are required for full virulence, as strains lacking these plasmids are attenuated in animal models of infection (29). B. anthracis Sterne (pXO1+ pXO2) has been utilized as a vaccine strain (41) but is still widely used in both in vitro and in vivo studies of anthrax infection since it causes lethal disease in mouse models of infection (46). Despite the crucial roles of pXO1 and pXO2 in anthrax disease pathogenesis, very few plasmid-encoded factors have been characterized. The best described are the antiphagocytic polyglutamyl capsule, encoded by biosynthetic enzymes on pXO2, and the anthrax toxin complex comprised of protective antigen, lethal factor (LF), and edema factor (EF), encoded by pXO1 (8, 29). Sequence analysis of the pXO1 plasmid revealed that the majority of plasmid-encoded factors, ∼70%, were of unknown function (31). More recently, in silico analysis identified novel pXO1-encoded proteins with immunogenic potential and relevance for pathogenesis. These included factors with putative adherent and invasive properties (2). Interestingly, two of the immunoreactive proteins were predicted surface layer (S-layer) proteins (2), one of which, B. anthracis S-layer protein A (BslA, pXO1-90), has recently been described and shown to mediate adherence of the vegetative form to host cells (20).Using in vitro and in vivo model systems, we have recently shown that B. anthracis Sterne adheres to and invades brain endothelium (44). This interaction was partially dependent on the pXO1-encoded anthrax toxins; however, the molecular mechanisms that contribute to B. anthracis penetration of the BBB are currently unknown. In this study, we investigate the role of pXO1 in B. anthracis Sterne''s interaction with brain endothelium and identify the encoded BslA adhesin as a critical mediator for BBB attachment and penetration during the pathogenesis of anthrax meningitis.  相似文献   
62.

Background  

With the exception of M. tuberculosis, little has been published on the problems of cross-contamination in bacteriology laboratories. We performed a retrospective analysis of subtyping data from the National Salmonella Reference Laboratory (Ireland) from 2000–2007 to identify likely incidents of laboratory cross contamination.  相似文献   
63.
The impact of the crystallinity of spray-dried inulins on their stability and physical properties was investigated after a conditioning of 1 week at different relative humidity levels (0% to 94%) at 20 °C. An environmental scanning electron microscopy study showed that the amorphous powders hardened at a relative humidity storage between 59% and 75%; while their semi-crystalline counterparts were partially agglomerated but friable in the same conditions. Caking was observed when the glass transition temperature of the amorphous phase of the material dropped below the storage temperature of the powder. It resulted in a crystallization of the structural units of varying lengths composing inulin, but also an increase of the crystallinity of the semi-crystalline ones. This study showed the importance of the crystallinity of inulin on its stability and physical properties during storage which is of crucial importance for the shelf-life of food and pharmaceutical products in the dry state. Financial support was provided for this study by the Walloon Region of Belgium (DGTRE) and Cosucra Groupe Warcoing SA.  相似文献   
64.
Adhesion-GPCRs provide essential cell-cell and cell-matrix interactions in development, and have been implicated in inherited human diseases like Usher Syndrome and bilateral frontoparietal polymicrogyria. They are the second largest subfamily of seven-transmembrane spanning proteins in vertebrates, but the function of most of these receptors is still not understood. The orphan Adhesion-GPCR GPR126 has recently been shown to play an essential role in the myelination of peripheral nerves in zebrafish. In parallel, whole-genome association studies have implicated variation at the GPR126 locus as a determinant of body height in the human population. The physiological function of GPR126 in mammals is still unknown. We describe a targeted mutation of GPR126 in the mouse, and show that GPR126 is required for embryonic viability and cardiovascular development.  相似文献   
65.
Uto-Aztecan premolar (UAP) is a rare morphological feature of the maxillary first premolar that occurs in Native American populations with frequencies ranging 0-16.7%. A recent summary of UAP by Delgado-Burbano et al. (2010) suggests the trait evolved around 4,000 BP in the American Southwest where the earliest cases occur and where the trait exists at the highest frequencies among contemporary populations. In this article, we present new data on UAP prevalence from an Archaic North American sample from Buckeye Knoll, Texas (circa 7,500-6,200 cal BP). Buckeye Knoll preserves a single case of UAP, and a sample frequency of 3.6%. In addition, we confirm the presence of UAP in other eastern North American Archaic skeletal samples from the Windover and Harris Creek at Tick Island sites in Florida. We also review the dental morphological literature to assess: 1) whether UAP prevalence is limited to New World populations, and 2) whether the trait's antiquity can be extended further into the Early Holocene Paleoindian period. Additional cases of UAP are presented from the Pacific coast of South America, Europe, Asia, and Australia. Combined, these data greatly expand the spatial and temporal distribution of UAP and suggest the trait evolved considerably earlier than previously thought.  相似文献   
66.
The U6 and 7SK RNA polymerase III promoters are widely used in RNAi research for the expression of shRNAs. However, with their increasing use in vitro and in vivo, issues associated with cytotoxicity have become apparent with their use. Therefore, alternative promoters such as the weaker H1 promoter are becoming a popular choice. With interest in the chicken as a model organism, we aimed to identify and characterise the chicken H1 promoter for the expression of shRNAs for the purpose of RNAi. The chicken H1 promoter was isolated and sequence analysis identified conserved RNA polymerase III promoter elements. A shRNA expression cassette containing the chicken H1 promoter and shRNA targeting enhanced green fluorescent protein (EGFP) was developed. An RNAse protection assay confirmed activity of the promoter determined by the detection of expressed shRNAs. Comparison of the H1 promoter to the chicken RNA polymerase III 7SK and U6 promoters demonstrated that expressed shRNAs from the H1 promoter induced gene specific silencing, albeit to lower levels in comparison to both 7SK and U6 promoters. Here we have identified a new tool for RNAi research with specific applications to the chicken. The availability of a RNA polymerase III promoter that drives shRNA expression to reduced levels will greatly benefit in ovo/in vivo applications where there are concerns of cytotoxicity resulting from overexpression of an shRNA.  相似文献   
67.
Tissue-specific patterns of microRNA (miRNA) expression contribute to organogenesis during embryonic development. Using the embryonic chicken gonads as a model for vertebrate gonadogenesis, we previously reported that miRNAs are expressed in a sexually dimorphic manner during gonadal sex differentiation. Being male biased, we hypothesised that up-regulation of microRNA 202* (MIR202*) is characteristic of testicular differentiation. To address this hypothesis, we used estrogen modulation to induce gonadal sex reversal in embryonic chicken gonads and analyzed changes in MIR202* expression. In ovo injection of estradiol-17beta at Embryonic Day 4.5 (E4.5) caused feminization of male gonads at E9.5 and reduced MIR202* expression to female levels. Female gonads treated at E3.5 with an aromatase inhibitor, which blocks estrogen synthesis, were masculinized by E9.5, and MIR202* expression was increased. Reduced MIR202* expression correlated with reduced expression of the testis-associated genes DMRT1 and SOX9, and up-regulation of ovary-associated genes FOXL2 and CYP19A1 (aromatase). Increased MIR202* expression correlated with down-regulation of FOXL2 and aromatase and up-regulation of DMRT1 and SOX9. These results confirm that up-regulation of MIR202* coincides with testicular differentiation in embryonic chicken gonads.  相似文献   
68.
Semen-derived enhancer of viral infection (SEVI), an amyloid fibril formed from a cationic peptide fragment of prostatic acidic phosphatase (PAP), dramatically enhances the infectivity of human immunodeficiency virus type 1 (HIV-1). Insoluble, sedimentable fibrils contribute to SEVI-mediated enhancement of virus infection. However, the SEVI-forming PAP(248–286) peptide is able to produce infection-enhancing structures much more quickly than it forms amyloid fibrils. This suggests that soluble supramolecular assemblies may enhance HIV-1 infection. To address this question, non-SEVI amyloid-like fibrils were derived from general amphipathic peptides of sequence Ac-Kn(XKXE)2-NH2. These cationic peptides efficiently self-assembled to form soluble, fibril-like structures that were, in some cases, able to enhance HIV-1 infection even more efficiently than SEVI. Experiments were also performed to determine whether agents that efficiently shield the charged surface of SEVI fibrils block SEVI-mediated infection-enhancement. To do this, we generated self-assembling anionic peptides of sequence Ac-En(XKXE)2-NH2. One of these peptides completely abrogated SEVI-mediated enhancement of HIV-1 infection, without altering HIV-1 infectivity in the absence of SEVI. Collectively, these data suggest that soluble SEVI assemblies may mediate infection-enhancement, and that anionic peptide supramolecular assemblies have the potential to act as anti-SEVI microbicides.  相似文献   
69.
Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号