首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9692篇
  免费   813篇
  2023年   42篇
  2022年   86篇
  2021年   212篇
  2020年   125篇
  2019年   162篇
  2018年   232篇
  2017年   195篇
  2016年   276篇
  2015年   439篇
  2014年   459篇
  2013年   600篇
  2012年   738篇
  2011年   597篇
  2010年   434篇
  2009年   370篇
  2008年   486篇
  2007年   483篇
  2006年   457篇
  2005年   414篇
  2004年   390篇
  2003年   371篇
  2002年   321篇
  2001年   231篇
  2000年   177篇
  1999年   147篇
  1998年   122篇
  1997年   101篇
  1996年   89篇
  1995年   84篇
  1994年   78篇
  1993年   78篇
  1992年   113篇
  1991年   115篇
  1990年   126篇
  1989年   109篇
  1988年   99篇
  1987年   87篇
  1986年   95篇
  1985年   84篇
  1984年   75篇
  1983年   53篇
  1982年   51篇
  1981年   45篇
  1980年   39篇
  1979年   42篇
  1978年   44篇
  1977年   36篇
  1976年   41篇
  1975年   33篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
951.
The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain.  相似文献   
952.
Acetogenins (ACGs) are bioactive compounds with cytotoxic properties in different cell lines. They are antitumoural, antiparasitic, antimalarial, insecticidal, antimicrobial, anti-fungal and antibacterial. These secondary metabolites function in plant defence and are found in specific organelles and specific cells, thereby preventing toxicity to the plant itself and permitting site-specific defence. The aim of this work was to histochemically determine the in situ localisation of ACGs in the endosperm of Annona macroprophyllata seeds using Kedde’s reagent. Additionally, the co-localisation of ACGs with other storage molecules was analysed. The seeds were analysed after 6 and 10 days of imbibition, when 1 or 2 cm of the radicle had emerged and metabolism was fully established. The seeds were then transversally cut in half at the midline and processed using different histological and histochemical techniques. Positive reactions with Kedde’s reagent were only observed in fresh, unfixed sections that were preserved in water, and staining was found only in the large cells (the idioblasts) at the periphery of the endosperm. The ACGs’ positive reaction with Sudan III corroborated their lipid nature. Paraffin sections stained with Naphthol Blue Black showed reactions in the endosperm parenchyma cells and stained the proteoplasts blue, indicating that they might correspond to storage sites for albumin-like proteins. Lugol’s iodine, which is similar in chemical composition to Wagner’s reagent, caused a golden brown reaction product in the cytoplasm of the idioblasts, which may indicate the presence of alkaloids.Based on these results, we propose that Kedde’s reagent is an appropriate histochemical stain for detecting ACGs in situ in idioblasts and that idioblasts store ACGs and probably alkaloids. ACGs that are located in idioblasts found in restricted, peripheral areas of the endosperm could serve as a barrier that protects the seeds against insects and pathogen attack.Key words: Annona, Kedde’s reagent, acetogenin histochemistry, storage reserves histochemistry, acetogenin idioblast  相似文献   
953.
Vasculogenesis, the establishment of the vascular plexus and angiogenesis, branching of new vessels from the preexisting vasculature, involves coordinated endothelial differentiation, proliferation and migration. Disturbances in these coordinated processes may accompany diseases such as cancer. We hypothesized that the p53 family member p73, which regulates cell differentiation in several contexts, may be important in vascular development. We demonstrate that p73 deficiency perturbed vascular development in the mouse retina, decreasing vascular branching, density and stability. Furthermore, p73 deficiency could affect non endothelial cells (ECs) resulting in reduced in vivo proangiogenic milieu. Moreover, p73 functional inhibition, as well as p73 deficiency, hindered vessel sprouting, tubulogenesis and the assembly of vascular structures in mouse embryonic stem cell and induced pluripotent stem cell cultures. Therefore, p73 is necessary for EC biology and vasculogenesis and, in particular, that DNp73 regulates EC migration and tube formation capacity by regulation of expression of pro-angiogenic factors such as transforming growth factor-β and vascular endothelial growth factors. DNp73 expression is upregulated in the tumor environment, resulting in enhanced angiogenic potential of B16-F10 melanoma cells. Our results demonstrate, by the first time, that differential p73-isoform regulation is necessary for physiological vasculogenesis and angiogenesis and DNp73 overexpression becomes a positive advantage for tumor progression due to its pro-angiogenic capacity.Vascular system formation is one of the earliest events during organogenesis.1 The original vascular plexus is established by vasculogenesis, through differentiation and assembly of mesodermal precursors.2 The angiogenesis process allows the formation of new blood vessels from the existing vasculature and is perturbed in many diseases, including cancer.3 Although efforts have been made to identify factors that control vascular development, the understanding of the molecular networks remains incomplete.The formation of new capillaries and the remodeling of preexisting blood vessels is linked by signal transduction pathways.4 The members of the p53 family (p53, p73 and p63) coordinate cell proliferation, migration and differentiation, and could act as regulators of vascular development. TP73 function in angiogenesis is quite controversial,5, 6, 7 and it has never been addressed using developmental models.TP73 has a dual nature that resides in the existence of TA and DNp73 variants. TAp73 is capable of transactivating p53 targets8, 9, 10 whereas DNp73 can act as p53 and TAp73 repressor.11, 12, 13 TP73 final outcome will depend upon the differential expression of the TA/DNp73 isoforms in each cellular context, as they can execute synergic, as well as antagonist, functions.TP73 role during development is emphasized by the p73-knockout mice (Trp73−/−, p73KO from now on) multiple growth defects.14 These mice, which lack all p73 isoforms, exhibit gastrointestinal and cranial hemorrhages,14 suggestive of vascular fragility. Furthermore, TAp73 directly regulates GATA-1,8 which is essential for endothelial and hematopoietic differentiation.15, 16 This compounded information led us to hypothesize that p73 could be implicated in the regulation of vasculogenesis/angiogenesis.Regulation of these processes involves a broad range of signaling molecules essential for vascular growth and stability,17 such as vascular endothelial growth factor (VEGF)18 and transforming growth factor-β (TGF).19 TGF-β operates as a rheostat that controls endothelial cell (EC) differentiation, having an inhibitory effect on EC migration and proliferation by the TGF-β/TGFRI (ALK5)/Smad2/3 pathway, while the TβRII–ALK5/ALK1 complex activates Smad1/5/8, ID1 expression and a pro-angiogenic state.20, 21, 22Regulation of the TGF-β and VEGF pathways by p53 family members has been documented.23, 24 However, p73''s function in these pathways during development remains largely unexplored. In this work, we have used mouse embryonic stem cells (mESC) and induced pluripotent stem cells (iPSCs) as models that recapitulate early vascular morphogenesis.25, 26, 27 ESC and iPSC form multi-cellular aggregates (embryoid bodies, EBs) that, under appropriate conditions, generate functional EC.28 mESC and iPSC differentiation capacity into ECs has been fully addressed.29, 30 We have also performed retinal vascularization analysis to assess vascular processes in vivo.31, 32We demonstrate that p73 deficiency perturbs density and stability of mouse retinal development by affecting VEGF and TGF-β signaling. Furthermore, p73 is necessary for the assembly of vascular structures under physiological conditions in mESC and iPSC. Moreover, DNp73 positively affects angiogenesis through regulation of the TGF pathway in human umbilical vein cells (HUVEC) and DNp73-overexpression results in enhanced angiogenic potential of B16-F10 melanoma cells.  相似文献   
954.
955.
Gatts  Pedro  Franco  Marcos  dos Santos  Luciano  Rocha  Diogo  de Sá  Fabrício  Netto  Eurico  Machado  Phillipe  Masi  Bruno  Zalmon  Ilana 《Aquatic Ecology》2015,49(3):343-355
Aquatic Ecology - To investigate how variations in the small-scale distance between patchy reef modules affect the structure and composition of the associated ichthyofauna, concrete reefballs were...  相似文献   
956.
957.
A number of plant pathogenic and symbiotic microbes produce specialized cellular structures that invade host cells where they remain enveloped by host‐derived membranes. The mechanisms underlying the biogenesis and functions of host–microbe interfaces are poorly understood. Here, we show that plant late endocytic trafficking is diverted toward the extrahaustorial membrane (EHM); a host–pathogen interface that develops in plant cells invaded by Irish potato famine pathogen Phytophthora infestans. A late endosome and tonoplast marker protein Rab7 GTPase RabG3c, but not a tonoplast‐localized sucrose transporter, is recruited to the EHM, suggesting specific rerouting of vacuole‐targeted late endosomes to a host–pathogen interface. We revealed the dynamic nature of this process by showing that, upon activation, a cell surface immune receptor traffics toward the haustorial interface. Our work provides insight into the biogenesis of the EHM and reveals dynamic processes that recruit membrane compartments and immune receptors to this host–pathogen interface.   相似文献   
958.
959.

Background

Species from the Paracoccidioides complex are thermally dimorphic fungi and the causative agents of paracoccidioidomycosis, a deep fungal infection that is the most prevalent systemic mycosis in Latin America and represents the most important cause of death in immunocompetent individuals with systemic mycosis in Brazil. We previously described the identification of eight new families of DNA transposons in Paracoccidioides genomes. In this work, we aimed to identify potentially active retrotransposons in Paracoccidioides genomes.

Results

We identified five different retrotransposon families (four LTR-like and one LINE-like element) in the genomes of three Paracoccidioides isolates. Retrotransposons were present in all of the genomes analyzed. P. brasiliensis and P. lutzii species harbored the same retrotransposon lineages but differed in their copy numbers. In the Pb01, Pb03 and Pb18 genomes, the number of LTR retrotransposons was higher than the number of LINE-like elements, and the LINE-like element RtPc5 was transcribed in Paracoccidioides lutzii (Pb01) but could not be detected in P. brasiliensis (Pb03 and Pb18) by semi-quantitative RT-PCR.

Conclusion

Five new potentially active retrotransposons have been identified in the genomic assemblies of the Paracoccidioides species complex using a combined computational and experimental approach. The distribution across the two known species, P. brasiliensis and P. lutzii, and phylogenetics analysis indicate that these elements could have been acquired before speciation occurred. The presence of active retrotransposons in the genome may have implications regarding the evolution and genetic diversification of the Paracoccidioides genus.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1564-7) contains supplementary material, which is available to authorized users.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号