首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   33篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2017年   3篇
  2016年   5篇
  2015年   18篇
  2014年   11篇
  2013年   23篇
  2012年   15篇
  2011年   14篇
  2010年   16篇
  2009年   8篇
  2008年   11篇
  2007年   18篇
  2006年   25篇
  2005年   17篇
  2004年   16篇
  2003年   11篇
  2002年   8篇
  2001年   12篇
  2000年   14篇
  1999年   12篇
  1998年   6篇
  1997年   4篇
  1996年   7篇
  1995年   9篇
  1994年   7篇
  1993年   5篇
  1992年   11篇
  1991年   6篇
  1990年   7篇
  1989年   12篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1979年   9篇
  1978年   4篇
  1977年   3篇
  1976年   6篇
  1975年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1967年   2篇
排序方式: 共有433条查询结果,搜索用时 31 毫秒
61.
62.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2, 6-dimethoxyphenol (Km = 2.6 x 10(-5) +/- 7 x 10(-6) M), catechol (Km = 2.5 x 10(-4) +/- 1 x 10(-5) M), pyrogallol (Km = 3.1 x 10(-4) +/- 4 x 10(-5) M), and guaiacol (Km = 5.1 x 10(-4) +/- 2 x 10(-5) M). In addition, the laccase catalyzed the polymerization of 1, 8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen's hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   
63.
Dihydrofolate reductase is an essential bacterial enzyme necessary for the maintenance of intracellular folate pools in a biochemically active reduced state. In this report, the Mycobacterium avium folA gene was identified by functional genetic complementation, sequenced, and expressed for the first time. It has an open reading frame of 543 bp with a G+C content of 73%. The translated polypeptide sequence shows 58% identity to the consensus sequence of the conserved regions from eight other bacterial dihydrofolate reductases. Recombinant M. avium dihydrofolate reductase was expressed actively in Escherichia coli, and SDS-PAGE analysis revealed a 20 kDa species, agreeable with that predicted from the polypeptide sequence.  相似文献   
64.
65.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   
66.
67.

Background

The TGF family plays a key role in bone homeostasis. Systemic or topic application of proteins of this family apparently positively affects bone healing in vivo. However, patients with chronic inflammation, having increased TGF-β1 serum-levels, often show reduced bone mineral content and disturbed bone healing. Therefore, we wanted to identify intracellular mechanisms induced by chronic presence of TGF-β1 and their possible role in bone homeostasis in primary human osteoblasts.

Methodology/Principal Findings

Osteoblasts were isolated from femur heads of patients undergoing total hip replacement. Adenoviral reporter assays showed that in primary human osteoblasts TGF-β1 mediates its signal via Smad2/3 and not Smad1/5/8. It induces proliferation as an intermediate response but decreases AP-activity and inorganic matrix production as a late response. In addition, expression levels of osteoblastic markers were strongly regulated (AP↓; Osteocalcin↓; Osteopontin↑; MGP↓; BMP 2↓; BSP2↓; OSF2↓; Osteoprotegerin↓; RANKL↑) towards an osteoclast recruiting phenotype. All effects were blocked by inhibition of Smad2/3 signaling with the Alk5-Inhibitor (SB431542). Interestingly, a rescue experiment showed that reduced AP-activities did not recover to base line levels, even 8 days after stopping the TGF-β1 application.

Conclusions/Significance

In spite of the initial positive effects on cell proliferation, it is questionable if continuous Smad2/3 phosphorylation is beneficial for bone healing, because decreased AP-activity and BMP2 levels indicate a loss of function of the osteoblasts. Thus, inhibition of Smad2/3 phosphorylation might positively influence functional activity of osteoblasts in patients with chronically elevated TGF-β1 levels and thus, could lead to an improved bone healing in vivo.  相似文献   
68.
Some ABC transporters play a significant role in human health and illness because they confer multidrug resistance (MDR) through their overexpression. Compounds that inhibit the drug efflux mechanism can improve efficacy or reverse resistance. Of the eight described ABC transporter subfamilies, those proteins conferring MDR in humans are in subfamilies A, B, C, and G. In nematodes, transporters in subfamilies B and C are suggested to confer resistance to ivermectin. The Brugia malayi ABC transporter superfamily was examined to assess their potential to influence sensitivity to moxidectin. There was an increase in expression of ABC transporters in subfamilies A, B, C, and G following treatment. Co-administration of moxidectin with inhibitors of ABC transporter function did not enhance sensitivity to moxidectin in males; however, sensitivity was significantly enhanced in females and microfilariae. The work suggests that ABC transporters influence sensitivity to moxidectin and have a potential role in drug resistance.  相似文献   
69.
Advances have been made since 2000 that contribute to our understanding of the biogenesis, structure and mechanism of copper-containing tyrosyl radical enzymes. Efforts to detail the biogenesis of galactose oxidase have produced the structure of the precursor enzyme, which provides a framework for emerging mechanistic studies. The role of the tyrosyl radical of cytochrome c oxidase is being defined in studies that aim to understand the His-Tyr crosslink, the location of the radical and, by direct attempts, to provide evidence for the radical during turnover.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号