首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   33篇
  国内免费   1篇
  497篇
  2023年   3篇
  2022年   6篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2015年   18篇
  2014年   12篇
  2013年   29篇
  2012年   25篇
  2011年   18篇
  2010年   18篇
  2009年   13篇
  2008年   17篇
  2007年   21篇
  2006年   28篇
  2005年   15篇
  2004年   15篇
  2003年   13篇
  2002年   8篇
  2001年   13篇
  2000年   11篇
  1999年   15篇
  1998年   7篇
  1997年   4篇
  1996年   8篇
  1995年   9篇
  1994年   9篇
  1993年   7篇
  1992年   12篇
  1991年   6篇
  1990年   6篇
  1989年   12篇
  1988年   9篇
  1987年   7篇
  1986年   6篇
  1985年   6篇
  1984年   3篇
  1983年   9篇
  1982年   6篇
  1980年   5篇
  1979年   8篇
  1978年   4篇
  1976年   5篇
  1975年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1967年   2篇
排序方式: 共有497条查询结果,搜索用时 28 毫秒
31.
The aim of this research was to determine whether all memory T cells have the same propensity to migrate to the joint in patients with juvenile idiopathic arthritis. Paired synovial fluid and peripheral blood mononuclear cell proliferative responses to a panel of antigens were measured and the results correlated with a detailed set of laboratory and clinical data from 39 patients with juvenile idiopathic arthritis. Two distinct patterns of proliferative response were found in the majority of patients: a diverse pattern, in which synovial fluid responses were greater than peripheral blood responses for all antigens tested; and a restricted pattern, in which peripheral blood responses to some antigens were more vigorous than those in the synovial fluid compartment. The diverse pattern was generally found in patients with a high acute phase response, whereas patients without elevated acute phase proteins were more likely to demonstrate a restricted pattern. We propose that an association between the synovial fluid T cell repertoire and the acute phase response suggests that proinflammatory cytokines may influence recruitment of memory T cells to an inflammatory site, independent of their antigen specificity. Additionally, increased responses to enteric bacteria and the presence of αEβ7 T cells in synovial fluid may reflect accumulation of gut associated T cells in the synovial compartment, even in the absence of an elevated acute phase response. This is the first report of an association between the acute phase response and the T cell population recruited to an inflammatory site.  相似文献   
32.
33.
34.
35.
36.
37.
Extracellular vesicles are small (~50–200 nm diameter) membrane-bound structures released by cells from all domains of life. While vesicles are abundant in the oceans, their functions, both for cells themselves and the emergent ecosystem, remain a mystery. To better characterize these particles – a prerequisite for determining function – we analysed the lipid, protein, and metabolite content of vesicles produced by the marine cyanobacterium Prochlorococcus. We show that Prochlorococcus exports a diverse array of cellular compounds into the surrounding seawater enclosed within discrete vesicles. Vesicles produced by two different strains contain some materials in common, but also display numerous strain-specific differences, reflecting functional complexity within vesicle populations. The vesicles contain active enzymes, indicating that they can mediate extracellular biogeochemical reactions in the ocean. We further demonstrate that vesicles from Prochlorococcus and other bacteria associate with diverse microbes including the most abundant marine bacterium, Pelagibacter. Together, our data point toward hypotheses concerning the functional roles of vesicles in marine ecosystems including, but not limited to, possibly mediating energy and nutrient transfers, catalysing extracellular biochemical reactions, and mitigating toxicity of reactive oxygen species.  相似文献   
38.
A systematic in silico approach has been employed to generate sound, experimentally validated active-site models for galactose oxidase (GO) using a hybrid density functional, B(38HF)P86. GO displays three distinct oxidation states: oxidized [Cu(II)-Y*]; semireduced [Cu(II)-Y]; and reduced [Cu(I)-Y]. Only the [Cu(II)-Y*] and the [Cu(I)-Y] states are assumed to be involved in the catalytic cycle, but their structures have not yet been determined. We have developed several models (1-7) for the [Cu(II)-Y*] state that were evaluated by comparison of our computational results with experimental data. An extended model system (6) that includes solvent molecules and second coordination sphere residues (R330, Y405, and W290) is essential to obtain an experimentally correct electronic structure of the active site. The optimized structure of 6 resulted in a five-coordinate Cu site with a protein radical centered on the Tyr-Cys cofactor. We further validated our converged model with the largest model (7) that included additional outer-sphere residues (Q406, H334, Y329, G513, and T580) and water molecules. Adding these residues did not affect significantly the active site's electronic and geometric structures. Using both 6 and 7, we explored the redox dependence of the active-site structure. We obtained four- and three-coordinate Cu sites for [Cu(II)-Y] and [Cu(I)-Y] states, respectively, that corroborate well with the experimental data. The relative energies of these states were validated by a comparison with experimental redox potentials. Collectively, our computational GO models well reproduce the physicochemical characteristics of the individual states, including their redox behaviors.  相似文献   
39.
A method was developed to determine the contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to the nitrification potentials (NPs) of soils taken from forest, pasture, cropped, and fallowed (19 years) lands. Soil slurries were exposed to acetylene to irreversibly inactivate ammonia monooxygenase, and upon the removal of acetylene, the recovery of nitrification potential (RNP) was monitored in the presence and absence of bacterial or eukaryotic protein synthesis inhibitors. For unknown reasons, and despite measureable NPs, RNP did not occur consistently in forest soil samples; however, pasture, cropped, and fallowed soil RNPs commenced after lags that ranged from 12 to 30 h after acetylene removal. Cropped soil RNP was completely prevented by the bacterial protein synthesis inhibitor kanamycin (800 μg/ml), whereas a combination of kanamycin plus gentamicin (800 μg/ml each) only partially prevented the RNP (60%) of fallowed soils. Pasture soil RNP was completely insensitive to either kanamycin, gentamicin, or a combination of the two. Unlike cropped soil, pasture and fallowed soil RNPs occurred at both 30°C and 40°C and without supplemental NH(4)(+) (≤ 10 μM NH(4)(+) in solution), and pasture soil RNP demonstrated ~ 50% insensitivity to 100 μM allyl thiourea (ATU). In addition, fallowed and pasture soil RNPs were insensitive to the fungal inhibitors nystatin and azoxystrobin. This combination of properties suggests that neither fungi nor AOB contributed to pasture soil RNP and that AOA were responsible for the RNP of the pasture soils. Both AOA and AOB may contribute to RNP in fallowed soil, while RNP in cropped soils was dominated by AOB.  相似文献   
40.
Major advances have been made during 1997 and 1998 toward understanding the structure/function relationships of the active sites in copper-containing oxidases. Central to this progress has been the elucidation of crystal structures for many of these enzymes. For example, studies of the mechanisms of biogenesis and/or catalysis of amine oxidase and galactose oxidase have been both stimulated and directed by the availability of structures for these proteins. Similarly, it is anticipated that the recently published crystal structures of peptidylglycine alpha-hydroxylating monooxygenase and laccase will contribute greatly toward understanding the roles of copper in these two proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号