首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2399篇
  免费   251篇
  国内免费   2篇
  2652篇
  2022年   16篇
  2021年   30篇
  2020年   17篇
  2019年   16篇
  2018年   15篇
  2017年   21篇
  2016年   63篇
  2015年   111篇
  2014年   111篇
  2013年   141篇
  2012年   171篇
  2011年   179篇
  2010年   95篇
  2009年   103篇
  2008年   149篇
  2007年   164篇
  2006年   154篇
  2005年   146篇
  2004年   150篇
  2003年   146篇
  2002年   123篇
  2001年   18篇
  2000年   20篇
  1999年   33篇
  1998年   40篇
  1997年   29篇
  1996年   28篇
  1995年   23篇
  1994年   22篇
  1993年   15篇
  1992年   13篇
  1991年   18篇
  1990年   19篇
  1989年   11篇
  1988年   11篇
  1987年   18篇
  1986年   14篇
  1985年   14篇
  1984年   14篇
  1983年   14篇
  1982年   22篇
  1981年   20篇
  1980年   16篇
  1979年   9篇
  1976年   7篇
  1975年   6篇
  1974年   11篇
  1973年   10篇
  1972年   10篇
  1971年   11篇
排序方式: 共有2652条查询结果,搜索用时 15 毫秒
131.

Background

Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development.

Methodology/Principal Findings

Cathepsin S expression and secretion from endothelial cells was characterised using RT-PCR and western blotting. We further show that cathepsin S promotes pericellular hydrolysis of extracellular matrix components in the tumour microenvironment and facilitates endothelial invasion. The cathepsin S inhibitory antibody, Fsn0503, blocks extracellular proteolysis, inhibiting endothelial invasion and tube formation in cell-based assays. The anti-angiogenic effects of Fsn0503 were also shown in vivo where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.

Conclusions/Significance

Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis.  相似文献   
132.
Thiarubrine C, a polyacetylenic 1,2-dithiin isolated from the roots of Rudbeckia hirta (Asteraceae), exhibited strong nematicidal activity in in vitro and growth chamber assays. Thiarubrine C was toxic, in the absence of light, to the plant-parasitic nematodes Meloidogyne incognita and Pratylenchus penetrans at LC₅₀s of 12.4 ppm and 23.5 ppm, respectively. A minimum exposure time between 12 and 24 hours was the critical period for nematode mortality due to thiarubrine C. Although thiarubrine C was not totally dependent on light for toxicity, activity was enhanced in the presence of light, especially with the microbivorous nematode, Teratorhabditis dentifera. Upon exposure of M. incognita juveniles to 20 ppm thiarubrine C for 1 hour, infection of tomato plants was greatly reduced compared to untreated checks. Thiarubrine C was also effective in reducing plant infection when mixed with soil 24 hours prior to or at planting, unlike other related compounds such as δ-terthienyl.  相似文献   
133.
Erythromycin resistance in Campylobacter coli from meat animals is frequently encountered and could represent a substantial barrier to antibiotic treatment of human infections. Erythromycin resistance in this organism has been associated with a point mutation (A2075G) in the 23S rRNA gene. However, the mechanisms responsible for possible dissemination of erythromycin resistance in C. coli remain poorly understood. In this study, we investigated transformation-mediated acquisition of erythromycin resistance by genotypically diverse C. coli strains from turkeys and swine, with total genomic DNA from erythromycin-resistant C. coli of either turkey or swine origin used as a donor. Overall, transformation to erythromycin resistance was significantly more frequent in C. coli strains from turkeys than in swine-derived strains (P < 0.01). The frequency of transformation to erythromycin resistance was 10−5 to 10−6 for turkey-derived strains but 10−7 or less for C. coli from swine. Transformants harbored the point mutation A2075G in the 23S rRNA gene, as did the erythromycin-resistant strains used as DNA donors. Erythromycin resistance was stable in transformants following serial transfers in the absence of the antibiotic, and most transformants had high MICs (>256 μg/ml), as did the C. coli donor strains. In contrast to the results obtained with transformation, spontaneous mutants had relatively low erythromycin MICs (32 to 64 μg/ml) and lacked the A2075G mutation in the 23S rRNA gene. These findings suggest that natural transformation has the potential to contribute to the dissemination of high-level resistance to erythromycin among C. coli strains colonizing meat animals.  相似文献   
134.
Production of 5'-nucleotides by Serratia marcescens and Enterobacter liquefaciens correlates with deoxyribonuclease production, indicating the close relationship between these two organisms. To determine further relationships, susceptibilities of 279 strains of the tribe Klebsielleae were determined by the high-potency disc method, agar-dilution method, or both, by using 14 antibiotics. Ninety-seven per cent of S. marcescens (201 of 207 strains) and 100% of E. liquefaciens (17 strains) had minimum inhibitory concentration (MIC) of 100 mug/ml or greater with colistin and polymyxin B. With these two antibiotics, 93% of other Enterobacter species (28 strains) had MIC values of less than 1.6 mug/ml, and 100% of Klebsiella (27 strains) had MIC values less than 1.6 mug/ml. Consistent patterns were not noted with the other antibiotics tested, but the results with colistin and polymyxin B provide additional evidence of the close relationship of S. marcescens and E. liquefaciens.  相似文献   
135.
136.
Summary The lactose carrier was extracted from membranes ofEscherichia coli and transport activity reconstituted in proteoliposomes containing different phospholipids. Two different assays f for carrier activity were utilized: counterflow and membrane potential-driven uptake. Proteoliposomes composed ofE. coli lipid or of 50% phosphatidylethanolamine–50% phosphatidylcholine showed very high transport activity with both assays. On the other hand, proteoliposomes containing asolectin, phosphatilcholine or 25% cholesterol/75% phosphatidylcholine showed good counterflow activity but poor membrane potentialdriven uptake. The discrepancy between the two types of transport activity in the latter group of three lipids is not due to leakiness to protons, size of proteoliposomes, or carrier protein content per proteoliposome. Apparently one function of the carrier molecule shows a broad tolerance for various phospholipids, while a second facet of the membrane protein activity requires very restricted lipid enviroment.  相似文献   
137.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl(-) channel expressed in the apical plasma membrane of fluid-transporting epithelia, where the plasma membrane abundance of CFTR is in part controlled by clathrin-mediated endocytosis. The protein networks that control CFTR endocytosis in epithelial cells have only been partially explored. The assembly polypeptide-2 complex (AP-2) is the prototypical endocytic adaptor critical for optimal clathrin coat formation. AP-2 is essential for recruitment of cargo proteins bearing the YXXΦ motif. Although AP-2 interacts directly with CFTR in vitro and facilitates CFTR endocytosis in some cell types, it remains unknown whether it is critical for CFTR uptake into clathrin-coated vesicles (CCVs). Disabled-2 (Dab2) is a clathrin-associated sorting protein (CLASP) that contributes to clathrin recruitment, vesicle formation, and cargo selection. In intestinal epithelial cells Dab2 was not found to play a direct role in CFTR endocytosis. By contrast, AP-2 and Dab2 were shown to facilitate CFTR endocytosis in human airway epithelial cells, although the specific mechanism remains unknown. Our data demonstrate that Dab2 mediates AP-2 independent recruitment of CFTR to CCVs in polarized human airway epithelial cells. As a result, it facilitates CFTR endocytosis and reduces CFTR abundance and stability in the plasma membrane. These effects are mediated by the DAB homology domain. Moreover, we show that in human airway epithelial cells AP-2 is not essential for CFTR recruitment to CCVs.  相似文献   
138.
Despite overlapping structural aspects with other phospholipids, lysophosphatidylserine (lysoPS), the monoacyl derivative of phosphatidylserine (diacylPS), appears to exert unique signaling characteristics important in both the early stages of initiating acute inflammation and in the orchestration of its resolution. LysoPS has long been known as a signaling phospholipid in mast cell biology, markedly enhancing stimulated histamine release and eicosanoid production. More recently, there has been a resurgence of interest in lysoPS as new roles in the promotion of phagocytosis of apoptotic cells, so-called efferocytosis, and resolution of inflammation have been identified. With regard to the latter, lysoPS generated in/on activated or aged apoptotic neutrophils enhances their clearance by macrophages via signaling through the macrophage G-protein coupled receptor G2A. In macrophages, this early acting pathway results in PKA-dependent augmentation of Rac1 activity via increased production of PGE? and cAMP. As such, macrophages stimulated with lysoPS demonstrate significantly increased efferocytic capacity necessary to clear large numbers of recruited neutrophils typical of acute inflammation. Given that clearance of these cells is critical for restoration of tissue function, lysoPS, as a pro-resolving lipid mediator, is hypothesized to play a key role in promoting timely resolution of inflammation. This article will review our current knowledge of lysoPS biology including receptor signaling and mechanisms of generation as well as summarize the more recent evidence of its expanding roles in inflammation.  相似文献   
139.
Abstract The prevalence of aac(2')-Ia , a gene coding for gentamicin 2'-JV-acetyltransferase in Providenda stuartii , among species of the Proteeae was investigated to determine if it is a common resistance factor and whether the correlation observed in P. stuartii between its expression and the levels of peptidoglycan O -acetylation represents a general feature of bacteria producing this form of modified peptidoglycan. An evaluation of the MICs of gentamicin for each of the species of the Proteeae did not reveal any apparent relationship between resistance and the degree of O-acetylation of peptidoglycan. The entire aac(2')-Ia gene was used as a probe in Southern hybridization experiments against genomic DNA from each species of the Proteeae. A sequence with strong homology to aac(2')-Ia was present only in Proteus penneri while weak hybridization was also observed to the restriction digested DNA from Providenda rettgeri . Other bacteria that O -acetylate peptidoglycan were also screened with this probe and a homologous DNA sequence was only found in Neisseria subflava . These data suggest that AAC(2')-Ia may contribute to the rO -acetylation of peptidoglycan in P. stuartii , but a more specific enzyme must also be produced for this function.  相似文献   
140.
All species should invest in systems that enhance longevity; however, a fundamental adult life‐history trade‐off exists between the metabolic resources allocated to maintenance and those allocated to reproduction. Long‐lived species will invest more in reproduction than in somatic maintenance as they age. We investigated this trade‐off by analyzing correlations among telomere length, reproductive effort and output, and basal corticosterone in Magellanic penguins (Spheniscus magellanicus). Telomeres shorten with age in most species studied to date, and may affect adult survival. High basal corticosterone is indicative of stressful conditions. Corticosterone, and stress, has been linked to telomere shortening in other species. Magellanic penguins are a particularly good model organism for this question as they are an unusually long‐lived species, exceeding their mass‐adjusted predicted lifespan by 26%. Contrary to our hypothesis, we found adults aged 5 years to over 24 years of age had similar telomere lengths. Telomeres of adults did not shorten over a 3‐year period, regardless of the age of the individual. Neither telomere length, nor the rate at which the telomeres changed over these 3 years, correlated with breeding frequency or investment. Older females also produced larger volume clutches until approximately 15 years old and larger eggs produced heavier fledglings. Furthermore, reproductive success (chicks fledged/eggs laid) is maintained as females aged. Basal corticosterone, however, was not correlated with telomere length in adults and suggests that low basal corticosterone may play a role in the telomere maintenance we observed. Basal corticosterone also declined during the breeding season and was positively correlated with the age of adult penguins. This higher basal corticosterone in older individuals, and consistent reproductive success, supports the prediction that Magellanic penguins invest more in reproduction as they age. Our results demonstrate that telomere maintenance may be a component of longevity even with increased reproductive effort, investment, and basal corticosterone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号