首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2372篇
  免费   251篇
  国内免费   2篇
  2022年   14篇
  2021年   28篇
  2020年   16篇
  2019年   16篇
  2018年   15篇
  2017年   21篇
  2016年   63篇
  2015年   111篇
  2014年   111篇
  2013年   140篇
  2012年   170篇
  2011年   179篇
  2010年   95篇
  2009年   103篇
  2008年   147篇
  2007年   164篇
  2006年   153篇
  2005年   145篇
  2004年   146篇
  2003年   145篇
  2002年   122篇
  2001年   19篇
  2000年   21篇
  1999年   32篇
  1998年   39篇
  1997年   30篇
  1996年   29篇
  1995年   21篇
  1994年   21篇
  1993年   14篇
  1992年   14篇
  1991年   17篇
  1990年   20篇
  1989年   11篇
  1988年   10篇
  1987年   18篇
  1986年   14篇
  1985年   16篇
  1984年   14篇
  1983年   13篇
  1982年   22篇
  1981年   20篇
  1980年   16篇
  1979年   8篇
  1976年   8篇
  1974年   11篇
  1973年   8篇
  1972年   10篇
  1971年   11篇
  1969年   5篇
排序方式: 共有2625条查询结果,搜索用时 31 毫秒
61.
A general method is described which allows the identification and preparation of peptides containing any amino acid of interest. The method has been applied to isolation of the methionyl peptides from a peptic digest of oxidized bovine rhodopsin. The peptide digestion mixture is first partially separated by ion exchange column chromatography. Location of peptides containing the desired amino acid is performed by amino acid analysis of acid hydrolyzed column fractions by high voltage paper electrophoresis. Peptides are further purified and prepared by peptide mapping, elution, and amino acid analysis using inexpensive high capacity techniques. Peptide sequencing is performed by a manual dansyl-Edman method well adapted for rapidly processing large numbers of samples. The methods are particularly well suited for detection and preparation of peptides containing amino acids for which there is no specific detection method.  相似文献   
62.
63.
Bladder cancer is the fourth most common cause of cancer in males in the United States. Invasive behavior is a major determinant of prognosis. In this study, we identified mammalian target of rapamycin complex 2 (mTORC2) as a central regulator of bladder cancer cell migration and invasion. mTORC2 activity was assessed by the extent of phosphorylation of Ser473 in AKT and determined to be approximately 5-fold higher in specimens of invasive human bladder cancer as opposed to non-invasive human bladder cancer. The immortalized malignant bladder cell lines, UMUC-3, J82 and T24 demonstrated higher baseline mTORC2 activity relative to the benign bladder papilloma-derived cell line RT4 and the normal urothelial cell line HU1. The malignant bladder cancer cells also demonstrated increased migration in transwell and denudation assays, increased invasion of matrigel, and increased capacity to invade human bladder specimens. Gene silencing of rictor, a critical component of mTORC2, substantially inhibited bladder cancer cell migration and invasion. This was accompanied by a significant decrease in Rac1 activation and paxillin phosphorylation. These studies identify mTORC2 as a major target for neutralizing bladder cancer invasion.  相似文献   
64.

Background/Objective

Phosphatidylserine (PS) exposed on apoptotic cells has been shown to stimulate production of transforming growth factor-β (TGF-β) and promote anti-inflammatory responses. However, the PS receptor(s) responsible for this induction has not been clearly determined.

Methodology/Principal Findings

In the present study, using RAWTβRII cells in which a truncated dominant negative TGF-β receptor II was stably transfected in order to avoid auto-feedback induction of TGF-β, we show that TGF-β1 synthesis is initiated via activation of the scavenger receptor, CD36. The response requires exposure of PS on the apoptotic cell surface and was absent in macrophages lacking CD36. Direct activation of CD36 with an anti-CD36 antibody initiated TGF-β1 production, and signaling pathways involving both Lyn kinase and ERK1/2 were shown to participate in CD36-driven TGF-β1 expression.

Conclusion/Significance

Since CD36 has been previously implicated in activation of secreted latent TGF-β, the present study indicates its role in the multiple steps to generation of this important biological mediator.  相似文献   
65.

Background

The Ca2+-activated K+ channel KCa3.1 is expressed in several structural and inflammatory airway cell types and is proposed to play an important role in the pathophysiology of asthma. The aim of the current study was to determine whether inhibition of KCa3.1 modifies experimental asthma in sheep.

Methodology and Principal Findings

Atopic sheep were administered either 30 mg/kg Senicapoc (ICA-17073), a selective inhibitor of the KCa3.1-channel, or vehicle alone (0.5% methylcellulose) twice daily (orally). Both groups received fortnightly aerosol challenges with house dust mite allergen for fourteen weeks. A separate sheep group received no allergen challenges or drug treatment. In the vehicle-control group, twelve weeks of allergen challenges resulted in a 60±19% increase in resting airway resistance, and this was completely attenuated by treatment with Senicapoc (0.25±12%; n = 10, P = 0.0147). The vehicle-control group had a peak-early phase increase in lung resistance of 82±21%, and this was reduced by 58% with Senicapoc treatment (24±14%; n = 10, P = 0.0288). Senicapoc-treated sheep also demonstrated reduced airway hyperresponsiveness, requiring a significantly higher dose of carbachol to increase resistance by 100% compared to allergen-challenged vehicle-control sheep (20±5 vs. 52±18 breath-units of carbachol; n = 10, P = 0.0340). Senicapoc also significantly reduced eosinophil numbers in bronchoalveolar lavage taken 48 hours post-allergen challenge, and reduced vascular remodelling.

Conclusions

These findings suggest that KCa3.1-activity contributes to allergen-induced airway responses, inflammation and vascular remodelling in a sheep model of asthma, and that inhibition of KCa3.1 may be an effective strategy for blocking allergen-induced airway inflammation and hyperresponsiveness in humans.  相似文献   
66.
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor “silent” germline micronuclear genome by a process of “unscrambling” and fragmentation. The tiny macronuclear “nanochromosomes” typically encode single, protein-coding genes (a small portion, 10%, encode 2–8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.  相似文献   
67.
68.
69.
The accumulation of β-amyloid peptides in the brain has been recognized as an essential factor in Alzheimer’s disease pathology. Several proteases, including Neprilysin (NEP), endothelin converting enzyme (ECE), and insulin degrading enzyme (IDE), have been shown to cleave β-amyloid peptides (Aβ). We have previously reported reductions in amyloid in APP+PS1 mice with increased expression of ECE. In this study we compared the vector-induced increased expression of NEP and IDE. We used recombinant adeno-associated viral vectors expressing either native forms of NEP (NEP-n) or IDE (IDE-n), or engineered secreted forms of NEP (NEP-s) or IDE (IDE-s). In a six-week study, immunohistochemistry staining for total Aβ was significantly decreased in animals receiving the NEP-n and NEP-s but not for IDE-n or IDE-s in either the hippocampus or cortex. Congo red staining followed a similar trend revealing significant decreases in the hippocampus and the cortex for NEP-n and NEP-s treatment groups. Our results indicate that while rAAV-IDE does not have the same therapeutic potential as rAAV-NEP, rAAV-NEP-s and NEP-n are effective at reducing amyloid loads, and both of these vectors continue to have significant effects nine months post-injection. As such, they may be considered reasonable candidates for gene therapy trials in AD.  相似文献   
70.
CD40L has a well-established role in enhancing the immunostimulatory capacity of normal and malignant B cells, but a formulation suitable for clinical use has not been widely available. Like other TNF family members, in vivo and in vitro activity of CD40L requires a homotrimeric configuration, and growing evidence suggests that bioactivity depends on higher-order clustering of CD40. We generated a novel formulation of human recombinant CD40L (CD40L-Tri) in which the CD40L extracellular domain and a trimerization motif are connected by a long flexible peptide linker. We demonstrate that CD40L-Tri significantly expands normal CD19+ B cells by over 20- to 30-fold over 14 days and induces B cells to become highly immunostimulatory antigen-presenting cells (APCs). Consistent with these results, CD40L-Tri-activated B cells could effectively stimulate antigen-specific T responses (against the influenza M1 peptide) from normal volunteers. In addition, CD40L-Tri could induce malignant B cells to become effective APCs, such that tumor-directed immune responses could be probed. Together, our studies demonstrate the potent immune-stimulatory effects of CD40L-Tri on B cells that enable their expansion of antigen-specific human T cells. The potent bioactivity of CD40L-Tri is related to its ability to self-multimerize, which may be facilitated by its long peptide linker.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号