首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2376篇
  免费   248篇
  国内免费   2篇
  2022年   13篇
  2021年   28篇
  2020年   16篇
  2019年   16篇
  2018年   15篇
  2017年   21篇
  2016年   63篇
  2015年   111篇
  2014年   111篇
  2013年   141篇
  2012年   170篇
  2011年   179篇
  2010年   95篇
  2009年   103篇
  2008年   147篇
  2007年   164篇
  2006年   152篇
  2005年   145篇
  2004年   146篇
  2003年   145篇
  2002年   122篇
  2001年   18篇
  2000年   19篇
  1999年   32篇
  1998年   38篇
  1997年   29篇
  1996年   28篇
  1995年   21篇
  1994年   21篇
  1993年   15篇
  1992年   13篇
  1991年   17篇
  1990年   19篇
  1989年   11篇
  1988年   10篇
  1987年   18篇
  1986年   14篇
  1985年   14篇
  1984年   13篇
  1983年   13篇
  1982年   22篇
  1981年   20篇
  1980年   16篇
  1979年   8篇
  1976年   7篇
  1974年   11篇
  1973年   8篇
  1972年   10篇
  1971年   11篇
  1969年   5篇
排序方式: 共有2626条查询结果,搜索用时 31 毫秒
31.
Reaction of the allylidene tungsten complex [W(CPhCHCHMe)Br2(CO)2(4-picoline)] (1) with the dithiocarbamates MS2CNR2 (a: M=Na, R=Et; b: M=Na, R=Me; c: M=Li, R=Ph) in THF at 50 °C affords the vinylketene tungsten complexes [W(S2CNR2)2(OCCPhCHCHMe)(CO)] (2a–c). At lower temperatures, four reaction intermediates (3–6) may be discerned. Spectroscopic studies indicate that these compounds contain η4-allyldithiocarbamate ligands which are generated by addition of dithiocarbamate across the metal-carbon double bond of the allylidene-tungsten unit in 1. The structures of [W(S2CNEt2)2(OCCPhCHCHMe)(CO)] (2a) and of one intermediate, [W(η4-Et2NCS2CPhCHCHMe)(S2CNEt2)(CO)2] (5a) were elucidated by X-ray crystallography.  相似文献   
32.
Background: Paired helical filaments (PHFs) are a characteristic pathological feature of Alzheimer's disease; their principal component is the microtubule-associated protein tau. The tau in PHFs (PHF-tau) is hyperphosphorylated, but the cellular mechanisms responsible for this hyperphosphorylation have yet to be elucidated. A number of kinases, including mitogen-activated protein (MAP) kinase, glycogen synthase kinase (GSK)-3α, GSK-3β and cyclin-dependent kinase-5, phosphorylate recombinant tau in vitro so that it resembles PHF-tau as judged by its reactivity with a panel of antibodies capable of discriminating between normal tau and PHF-tau, and by a reduced electrophoretic mobility that is characteristic of PHF-tau. To determine whether MAP kinase, GSK-3α and GSK-3β can also induce Alzheimer's disease-like phosphorylation of tau in mammalian cells, we studied the phosphorylation status of tau in primary neuronal cultures and transfected COS cells following changes in the activities of MAP kinase and GSK-3.Results Activating MAP kinase in cultures of primary neurons or transfected COS cells expressing tau isoforms did not increase the level of phosphorylation for any PHF-tau epitope investigated. But elevating GSK-3 activity in the COS cells by co-transfection with GSK-3α or GSK-3β decreased the electrophoretic mobility of tau so that it resembled that of PHF-tau, and induced reactivity with eight PHF-tau-selective monoclonal antibodies.Conclusion Our data indicate that GSK-3α and/or GSK-3β, but not MAP kinase, are good candidates for generating PHF-type phosphorylation of tau in Alzheimer's disease. The involvement of other kinases in the generation of PHFs cannot, however, be eliminated. Our results suggest that aberrant regulation of GSK-3 may be a pathogenic mechanism in Alzheimer's disease.  相似文献   
33.
Fatty acid-binding proteins (FABP) are abundant cytosolic proteins whose level is responsive to nutritional, endocrine, and a variety of pathological states. Although FABPs have been investigatedin vitro for several decades, little is known of their physiological function. Liver L-FABP binds both fatty acids and cholesterol. Competitive binding analysis and molecular modeling studies of L-FABP indicate the presence of two ligand binding pockets that accomodate one fatty acid each. One fatty acid binding site is identical to the cholesterol binding site. To test whether these observations obtainedin vitro were physiologically relevant, the cDNA encoding L-FABP was transfected into L-cells, a cell line with very low endogenous FABP and sterol carrier proteins. Uptake of both ligands did not differ between control cells and low expression clones. In contrast, both fatty acid uptake and cholesterol uptake were stimulated in the high expression cells. In high expression cells, uptake of fluorescent cis-parinaric acid was enhanced more than that of trans-parinaric acid. This is consistent with the preferential binding of cis-fatty acids to L-FABP but in contrast to the preferential binding of trans-parinaric acid to the L-cell plasma membrane fatty acid transporter (PMFABP). These data show that the level of cytosolic fatty acids in intact cells can regulate both the extent and specificity of fatty acid uptake. Last, sphingomyelinase treatment of L-cells released cholesterol from the plasma membrane to the cytoplasm and stimulated microsomal acyl-CoA: cholesteryl acyl transferase (ACAT). This process was accelerated in high expression cells. These observations show for the first time in intact cells that L-FABP, a protein most prevalent in liver and intestine where much fat absorption takes place, may have a role in fatty acid and cholesterol absorption.Abbreviations FABP fatty acid-binding protein - L-FABP liver fatty acid-binding protein - I-FABP intestinal fatty acid-binding protein - H-FABP heart fatty acid-binding protein - A-FABP adipocyte fatty acid-binding protein - PMFABP plasma membrane fatty acid-binding protein - SCP-2 sterol carrier protein-2 - Dehydroergosterol (DHE) d-5,7,9(11),22-ergostatetraene-3b-ol - cis-parinaric acid-9Z, 11E, 13E, 15Z-octatetraenoic acid - trans parinaric acid, 9E, 11E, 13E, 14E-octatetraenoic acid - BSA bovine serum albumin - KRH Krebs-Ringer-Henseleit buffer  相似文献   
34.
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1−/D mice). Ckmm-Cre+/−;Ercc1−/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/−;Ercc1−/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/-;Ercc1−/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/−;Ercc1−/fl and Ercc1−/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.  相似文献   
35.
Escherichia coli strains causing acute pyelonephritis often express multiple fimbrial types and haemolysin, which may contribute to their ability to adhere to, and interact with, kidney epithelial cells. Strain CFT073, a pap+, sfa+, pil+, hly+ pyelonephritis strain, previously established as virulent in the CBA mouse model of ascending urinary tract infection and cytotoxic for cultured human renal epithelial cells, was selected for construction of isogenic strains. From a gene bank of this strain, two distinct copies of the pap operon were isolated. The two P-fimbrial determinants were sub-cloned into pCVD442, a positive selection suicide vector containing the sacB gene of Bacillus subtilis. Deletion mutations were introduced into each of the two constructs, within papEFG of one operon and papDEFG of the other. Suicide vectors carrying pap deletions were mobilized from E. coli SM10 lambda pir into CFT073 (NalR) and cointegrates were passaged on non-selective medium. The first pap mutation was identified by screening a Southern blot of DNA from sucrose-resistant colonies using a papEFG probe. This mutant retained the MRHA+ phenotype since a second functional copy of pap was still present. A double pap-deletion mutant, UPEC76, confirmed by Southern blotting, was unable to agglutinate human type O erythrocytes or α Gal(1–4)β Gal-coated latex beads. CBA mice (N =100) were challenged transurethrally with 105, 106, 107, or 109 cfu of strains CFT073 or UPEC76. After one week, quantitative cultures of urine, bladder, and kidney were done and histologic changes were examined. No substantive differences in organism concentration or histological findings between parent and mutant were detected in urine, bladder, or kidney at any challenge concentration. We conclude that adherence by P fimbriae of uro-pathogenic E. coli strain CFT073 plays only a subtle role in the development of acute pyelonephritis in the CBA mouse model.  相似文献   
36.
Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the δ subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration.  相似文献   
37.
In contrast to the degradation of penta-and hexachlorobiphenyls in chemostat cultures, the metabolism of PCBs by Alcaligenes sp. JB1 was shown to be restricted to PCBs with up to four chlorine substituents in resting-cell assays. Among these, the PCB congeners containing ortho chlorine substituents on both phenyl rings were found to be least degraded. Monochloro-benzoates and dichlorobenzoates were detected as metabolites. Resting cell assays with chlorobenzoates showed that JB1 could metabolize all three monochlorobenzoates and dichlorobenzoates containing only meta and para chlorine substituents, but not dichlorobenzoates possessing an ortho chlorine substituent. In enzyme activity assays, meta cleaving 2,3-dihydroxybiphenyl 1,2-dioxygenase and catechol 2,3-dioxygenase activities were constitutive, whereas benzoate dioxygenase and ortho cleaving catechol 1,2-dioxygenase activities were induced by their substrates. No activity was found for pyrocatechase II, the enzyme that is specific for chlorocatechols. The data suggest that complete mineralization of PCBs with three or more chlorine substituents by Alcaligenes sp. JB1 is unlikely.Abbreviations PCB polychlorinated biphenyls - CBA chlorobenzoate - D di - Tr tri - Te tetra - Pe penta- - H hexa  相似文献   
38.
39.
Summary Human corneal fibroblasts were infected with a retroviral delivery vector containing the E6 and E7 genes from human Papilloma virus type 16 in order to produce cell lines that have an expanded lifespan in culture. Morphologically, some of the trasfected corneal fibroblast lines appeared to have the normal spindle-shape morphology of diploid fibroblasts, whereas other lines appeared to have a more elongated morphology. All the cell lines were anchorage-dependent. Cells that had a normal morphology grew at a rate similar to normal diploid human corneal fibroblasts and had a population doubling time of 48 h. All E6/E7 expressing cell lines, regardless of morphology, produce types I, III, and V collagen, at levels similar to those observed in the parent corneal diploid fibroblast. These corneal fibroblast lines will be a usefulin vitro system to study collagen expression and fibril formation, as well as normal stroma development. These results also demonstrate that the use of E6/E7 genes to expand a cell’s lifespan can be a powerful tool because it does not appear to alter either the growth rate of the cell or collagen expression.  相似文献   
40.
Ligand-induced translocation of epidermal growth factor receptors (EGF-R) to the nucleus of NR6/HER fibroblasts has been studied by immunoelectron microscopy. Following treatment of NR6/HER cells with epidermal growth factor (EGF) for 1 h, there was a decrease in EGF-R labeling at the plasma membrane and a corresponding increase in EGF-R in the nucleus. This was preceded by a rapid and sustained increase in nuclear phosphotyrosine content, detectable within 2 min of EGF treatment. EGF-R translocation into the nucleus was completely prevented by 18 h serum starvation prior to treatment with EGF. These results indicate that translocation of EGF-R to the nucleus is a controlled process and they suggest theft EGF-R may directly influence nuclear function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号