首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9015篇
  免费   707篇
  国内免费   876篇
  10598篇
  2024年   43篇
  2023年   179篇
  2022年   366篇
  2021年   609篇
  2020年   400篇
  2019年   439篇
  2018年   461篇
  2017年   331篇
  2016年   421篇
  2015年   599篇
  2014年   676篇
  2013年   705篇
  2012年   871篇
  2011年   752篇
  2010年   467篇
  2009年   398篇
  2008年   432篇
  2007年   377篇
  2006年   314篇
  2005年   266篇
  2004年   217篇
  2003年   184篇
  2002年   152篇
  2001年   107篇
  2000年   112篇
  1999年   108篇
  1998年   84篇
  1997年   85篇
  1996年   56篇
  1995年   59篇
  1994年   72篇
  1993年   34篇
  1992年   38篇
  1991年   33篇
  1990年   25篇
  1989年   31篇
  1988年   16篇
  1987年   15篇
  1986年   10篇
  1985年   20篇
  1984年   6篇
  1983年   8篇
  1982年   7篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1975年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
Chitin is a homopolymer of β-(1,4)-linked N-acetyl-D-glucosamine (GlcNAc) and a major structural component of fungal cell walls. In plants, chitin acts as a microbe-associated molecular pattern (MAMP) that is recognized by lysin motif (LysM)-containing plant cell surface-localized pattern recognition receptors (PRRs) that activate a plethora of downstream immune responses. To deregulate chitin-induced plant immunity and successfully establish infection, many fungal pathogens secrete LysM domain-containing effector proteins during host colonization. The LysM effector Ecp6 from the tomato (Solanum lycopersicum) leaf mold fungus Cladosporium fulvum can outcompete plant PRRs for chitin binding because two of its three LysM domains cooperate to form a composite groove with ultra-high (pM) chitin-binding affinity. However, most functionally characterized LysM effectors contain only two LysMs, including Magnaporthe oryzae MoSlp1, Verticillium dahliae Vd2LysM, and Colletotrichum higginsianum ChElp1 and ChElp2. Here, we performed modeling, structural, and functional analyses to investigate whether such dual-domain LysM effectors can also form ultra-high chitin-binding affinity grooves through intramolecular LysM dimerization. However, our study suggests that intramolecular LysM dimerization does not occur. Rather, our data support the occurrence of intermolecular LysM dimerization for these effectors, associated with a substantially lower chitin binding affinity than monitored for Ecp6. Interestingly, the intermolecular LysM dimerization allows for the formation of polymeric complexes in the presence of chitin. Possibly, such polymers may precipitate at infection sites to eliminate chitin oligomers, and thus suppress the activation of chitin-induced plant immunity.

Fungal LysM effectors composed of two LysM domains bind chitin via intermolecular LysM dimerization, leading to polymers that may precipitate to eliminate chitin from infection sites to prevent the activation of host immune receptors.  相似文献   
82.
Clear cell renal cell carcinoma (ccRCC) is a primary kidney cancer with high aggressive phenotype and extremely poor prognosis. Accumulating evidence suggests that circular RNAs (circRNAs) play pivotal roles in the occurrence and development of various human cancers. However, the expression, clinical significance and regulatory role of circRNAs in ccRCC remain largely unclear. Here we report that circDVL1 to be reduced in the serums and tissues from ccRCC patients, and to negatively correlate with ccRCC malignant features. Overexpression of circDVL1 inhibits proliferation, induces G1/S arrest, triggers apoptosis, and reduces migration and invasion in different ccRCC cells in vitro. Correspondingly, circDVL1 overexpression suppresses ccRCC tumorigenicity in a mouse xenograft model. Mechanistically, circDVL1 serves as a sponge for oncogenic miR-412-3p, thereby preventing miR-412-3p-mediated repression of its target protocadherin 7 (PCDH7) in ccRCC cells. Collectively, our results demonstrate that circDVL1 exerts tumor-suppressive function during ccRCC progression through circDVL1/miR-412-3p/PCDH7 axis, and suggest that circDVL1 could be a novel diagnostic and prognositc marker and therapeutic target for ccRCC.  相似文献   
83.
84.
Transformation-associated recombination (TAR) has been widely used to assemble large DNA constructs. One of the significant obstacles hindering assembly efficiency is the presence of error-prone DNA repair pathways in yeast, which results in vector backbone recircularization or illegitimate recombination products. To increase TAR assembly efficiency, we prepared a dual-selective TAR vector, pGFCS, by adding a PADH1-URA3 cassette to a previously described yeast-bacteria shuttle vector, pGF, harboring a PHIS3-HIS3 cassette as a positive selection marker. This new cassette works as a negative selection marker to ensure that yeast harboring a recircularized vector cannot propagate in the presence of 5-fluoroorotic acid. To prevent pGFCS bearing ura3 from recombining with endogenous ura3-52 in the yeast genome, a highly transformable Saccharomyces cerevisiae strain, VL6-48B, was prepared by chromosomal substitution of ura3-52 with a transgene conferring resistance to blasticidin. A 55-kb genomic fragment of monkeypox virus encompassing primary detection targets for quantitative PCR was assembled by TAR using pGFCS in VL6-48B. The pGFCS-mediated TAR assembly showed a zero rate of vector recircularization and an average correct assembly yield of 79% indicating that the dual-selection strategy provides an efficient approach to optimizing TAR assembly.  相似文献   
85.
86.
Previous research shows that Wang-Smith chaotic simulated annealing, which employs a gradually decreasing time-step, has only a scaling effect to computational energy of the Hopfield model without changing its shape. This makes the net has sensitive dependence on the value of damping factor. Considering Chen-Aihara chaotic simulated annealing with decaying self-coupling has a shape effect to computational energy of the Hopfield model, a novel approach to improve Wang-Smith chaotic simulated annealing, which reaps the benefits of Wang-Smith model and Chen-Aihara model, is proposed in this paper. With the aid of this method the improved model can affect on computational energy of the Hopfield model from scaling and shape. By adjusting the time-step, the improved neural network can also pass from a chaotic to a non-chaotic state. From numerical simulation experiments, we know that the improved model can escape from local minima more efficiently than original Wang-Smith model.  相似文献   
87.
88.
Three heme-proteins, including myoglobin (Mb), hemoglobin (Hb) and horseradish peroxidase (HRP), were immobilized on edge-plane pyrolytic graphite (EPG) electrodes by agarose hydrogel. The proteins entrapped in the agarose film undergo fast direct electron transfer reactions, corresponding to FeIII = e- --> FeII. The formal potential (E degrees'), the apparent coverage (Gamma), the electron transfer coefficient (alpha) and the apparent electron transfer rate constant (ks) were calculated by integrating cyclic voltammograms or performing nonlinear regression analysis of square wave voltammetric (SWV) experimental data. The E degrees's are linearly dependent on solution pH (redox Bohr effect), indicating that the electron transfer was proton-coupled. Ultraviolet visible (UV-Vis) and reflection-absorption infrared (RAIR) spectra suggest that the conformation of proteins in the agarose film are little different from that proteins alone, and the conformation changes reversibly in the range of pH 3.0-10.0. Atomic force microscopy (AFM) images of the agarose film indicate a stable and crystal-like structure formed possibly due to the synergistic interaction of hydrogen bonding between N,N-dimethylformamide (DMF), agarose hydrogel and heme-proteins. This suggests a strong interaction between the heme-proteins and the agarose hydrogel. DMF plays an important role in immobilizing proteins and enhancing electron transfer between proteins and electrodes. The mechanisms for catalytic reduction of hydrogen peroxide and nitric oxide (NO) by proteins entrapped in agarose hydrogel were also explored.  相似文献   
89.

Key message

Our study shows that the expression of AtCBF3 and AtCOR15A improved the chilling tolerance in transgenic eggplant.

Abstract

In an attempt to improve chilling tolerance of eggplant (Solanum melongena L) plants, Arabidopsis C-repeat binding factor 3 (AtCBF3) and cold-regulated 15A (AtCOR15A) genes both driven by an Arabidopsis RESPONSIVE TO DESSICATION 29A promoter (AtRD29A) were transferred into the plants of eggplant cultivar Sanyueqie. Two independent homozygous transgenic lines were tested for their cold tolerance. The leaves of the transgenic plants in both lines withered much slower and slighter than the wild-type plants after exposure to cold stress treatment at 2 ± 1 °C. The gene expression of AtCBF3 and AtCOR15A was significantly increased as well as the proline content and the levels of catalase and peroxidase activities, while the relative electrical conductivity and the malondialdehyde content were remarkably decreased in the transgenic plants compared with the wild type at 4 ± 0.5 °C. The results showed that the expression of the exogenous AtCBF3 and AtCOR15A could promote the cold adaptation process to protect eggplant plants from chilling stress.  相似文献   
90.
Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号