首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1149篇
  免费   71篇
  国内免费   1篇
  2024年   2篇
  2023年   2篇
  2022年   5篇
  2021年   23篇
  2020年   14篇
  2019年   16篇
  2018年   32篇
  2017年   22篇
  2016年   38篇
  2015年   60篇
  2014年   75篇
  2013年   77篇
  2012年   85篇
  2011年   80篇
  2010年   48篇
  2009年   55篇
  2008年   65篇
  2007年   83篇
  2006年   44篇
  2005年   53篇
  2004年   54篇
  2003年   48篇
  2002年   37篇
  2001年   28篇
  2000年   31篇
  1999年   22篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1993年   2篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   16篇
  1988年   5篇
  1987年   10篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1973年   2篇
  1971年   3篇
  1970年   1篇
  1965年   2篇
  1934年   1篇
排序方式: 共有1221条查询结果,搜索用时 15 毫秒
131.
The gene encoding an α-l-arabinofuranosidase that could biotransform ginsenoside Rc {3-O-[β-d-glucopyranosyl-(1–2)-β-d-glucopyranosyl]-20-O-[α-l-arabinofuranosyl-(1–6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to ginsenoside Rd {3-O-[β-d-glucopyranosyl-(1–2)-β-d-glucopyranosyl]-20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol} was cloned from a soil bacterium, Rhodanobacter ginsenosidimutans strain Gsoil 3054T, and the recombinant enzyme was characterized. The enzyme (AbfA) hydrolyzed the arabinofuranosyl moiety from ginsenoside Rc and was classified as a family 51 glycoside hydrolase based on amino acid sequence analysis. Recombinant AbfA expressed in Escherichia coli hydrolyzed non-reducing arabinofuranoside moieties with apparent K m values of 0.53 ± 0.07 and 0.30 ± 0.07 mM and V max values of 27.1 ± 1.7 and 49.6 ± 4.1 μmol min−1 mg−1 of protein for p-nitrophenyl-α-l-arabinofuranoside and ginsenoside Rc, respectively. The enzyme exhibited preferential substrate specificity of the exo-type mode of action towards polyarabinosides or oligoarabinosides. AbfA demonstrated substrate-specific activity for the bioconversion of ginsenosides, as it hydrolyzed only arabinofuranoside moieties from ginsenoside Rc and its derivatives, and not other sugar groups. These results are the first report of a glycoside hydrolase family 51 α-l-arabinofuranosidase that can transform ginsenoside Rc to Rd.  相似文献   
132.
Frequency of gram-negative bacteria is markedly enhanced in inflamed gut, leading to augmented LPS in the intestine. Although LPS in the intestine is considered harmless and, rather, provides protective effects against epithelial injury, it has been suggested that LPS causes intestinal inflammation, such as necrotizing enterocolitis. Therefore, direct effects of LPS in the intestine remain to be studied. In this study, we examine the effect of LPS in the colon of mice instilled with LPS by rectal enema. We found that augmented LPS on the luminal side of the colon elicited inflammation in the small intestine remotely, not in the colon; this inflammation was characterized by body weight loss, increased fluid secretion, enhanced inflammatory cytokine production, and epithelial damage. In contrast to the inflamed small intestine induced by colonic LPS, the colonic epithelium did not exhibit histological tissue damage or inflammatory lesions, although intracolonic LPS treatment elicited inflammatory cytokine gene expression in the colon tissues. Moreover, we found that intracolonic LPS treatment substantially decreased the frequency of immune-suppressive regulatory T cells (CD4(+)/CD25(+) and CD4(+)/Foxp3(+)). We were intrigued to find that LPS-promoted intestinal inflammation is exacerbated in immune modulator-impaired IL-10(-/-) and Rag-1(-/-) mice. In conclusion, our results provide evidence that elevated LPS in the colon is able to cause intestinal inflammation and, therefore, suggest a physiological explanation for the importance of maintaining the balance between gram-negative and gram-positive bacteria in the intestine to maintain homeostasis in the gut.  相似文献   
133.
134.
135.
As a part of an ongoing search for novel antioxidants from the salt marsh plants, bioactivity-isolation and structure determination of constituents from Salicornia herbacea were performed. One new triterpenoid saponin (4), along with three known saponins (1-3), has been isolated from n-BuOH fraction of S. herbacea. On the basis of the spectroscopic methods, the structure of the new saponin 4 was elucidated as 3β-hydroxy-23-oxo-30-noroleana-12, 20(29)-diene-28-oic acid 3-O-β-D-glucuronopyranosyl-28-O-β-d-glucopyranoside. Scavenging effects of saponins 1-4 were examined on 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical and peroxynitrite. Particularly, saponin 3 exerted significant antioxidant activity on both authentic peroxynitrite and peroxynitrite generated from morpholinosydnonimine (SIN-1).  相似文献   
136.
Rho GDP dissociation inhibitor 2 (RhoGDI2) was initially identified as a regulator of the Rho family of GTPases. Our recent works suggest that RhoGDI2 promotes tumor growth and malignant progression, as well as enhances chemoresistance in gastric cancer. Here, we delineate the mechanism by which RhoGDI2 promotes gastric cancer cell invasion and chemoresistance using two-dimensional gel electrophoresis (2-DE) on proteins derived from a RhoGDI2-overexpressing SNU-484 human gastric cancer cell line and control cells. Differentially expressed proteins were identified using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). In total, 47 differential protein spots were identified; 33 were upregulated, and 14 were downregulated by RhoGDI2 overexpression. Upregulation of SAE1, Cathepsin D, Cofilin1, CIAPIN1, and PAK2 proteins was validated by Western blot analysis. Loss-of-function analysis using small interference RNA (siRNA) directed against candidate genes reveals the need for CIAPIN1 and PAK2 in RhoGDI2-induced cancer cell invasion and Cathepsin D and PAK2 in RhoGDI2-mediated chemoresistance in gastric cancer cells. These data extend our understanding of the genes that act downstream of RhoGDI2 during the progression of gastric cancer and the acquisition of chemoresistance.  相似文献   
137.
Yang BC  Lee SH  Hwang S  Lee HC  Im GS  Kim DH  Lee DK  Lee KT  Jeon IS  Oh SJ  Park SB 《BMB reports》2012,45(1):38-43
We investigated phenotypic differences in Hanwoo cattle cloned from somatic cells of a single adult. Ten genetically identical Hanwoo were generated by somatic cell nuclear transfer from a single adult. Weights at birth, growing pattern, horn and noseprint patterns were characterized to investigate phenotypic differences. The weights of clones at 6 and 12 months were slightly heavier than that of the donor. A horn pattern analysis revealed that seven clones had exactly the same horn pattern as the donor cow, whereas three were different. Although similarities such as general appearance can often be used to identify individual cloned animals, no study has characterized noseprint patterns for this end. A noseprint pattern analysis of all surviving clones showed that all eight animals had distinct noseprints. Four were similar to the donor, and the remaining four had more secondary-like characteristics.  相似文献   
138.
139.
140.
A novel beta-proteobacterium, designated BXN5-27(T), was isolated from soil of a ginseng field of Baekdu Mountain in China, and was characterized using a polyphasic approach. The strain was Gram-staining-negative, aerobic, motile, non-spore-forming, and rod shaped. Strain BXN5-27(T) exhibited beta-glucosidase activity that was responsible for its ability to transform ginsenoside Rb? (one of the dominant active components of ginseng) to compound Rd. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belonged to the family Comamonadaceae; it was most closely related to Ramlibacter henchirensis TMB834(T) and Ramlibacter tataouinensis TTB310(T) (96.4% and 96.3% similarity, respectively). The G+C content of the genomic DNA was 68.1%. The major menaquinone was Q-8. The major fatty acids were C??:?, summed feature 4 (comprising C??:? omega7c and/or iso-C??:? 2OH), and C??:? cyclo. Genomic and chemotaxonomic data supported the affiliation of strain BXN5-27(T) to the genus Ramlibacter. However, physiological and biochemical tests differentiated it phenotypically from the other established species of Ramlibacter. Therefore, the isolate represents a novel species, for which the name Ramlibacter ginsenosidimutans sp. nov. is proposed, with the type strain being BXN5-27(T) (= DSM 23480(T) = LMG 24525(T) = KCTC 22276(T)).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号