首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4999篇
  免费   462篇
  国内免费   365篇
  5826篇
  2024年   20篇
  2023年   91篇
  2022年   161篇
  2021年   260篇
  2020年   178篇
  2019年   264篇
  2018年   227篇
  2017年   141篇
  2016年   248篇
  2015年   363篇
  2014年   359篇
  2013年   376篇
  2012年   446篇
  2011年   389篇
  2010年   270篇
  2009年   244篇
  2008年   268篇
  2007年   238篇
  2006年   198篇
  2005年   138篇
  2004年   136篇
  2003年   133篇
  2002年   100篇
  2001年   87篇
  2000年   58篇
  1999年   76篇
  1998年   46篇
  1997年   35篇
  1996年   42篇
  1995年   29篇
  1994年   29篇
  1993年   33篇
  1992年   31篇
  1991年   27篇
  1990年   23篇
  1989年   11篇
  1988年   16篇
  1987年   7篇
  1986年   7篇
  1985年   11篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
排序方式: 共有5826条查询结果,搜索用时 15 毫秒
961.
AimsWe previously reported that the neurotoxicity of amyloid β protein (Aβ1–42, 10 nM) was blocked by an Aβ-derived tripeptide, Aβ32–34 (Ile-Gly-Leu, IGL), suggesting that IGL may be a lead compound in the design of Aβ antagonists. In the present study, three stable forms of IGL peptide with acetylation of its N-terminal and/or amidation of its C-terminal (acetyl-IGL, IGL-NH2 and acetyl-IGL-NH2) were synthesized and examined for their effects on Aβ-induced neurotoxicity.Main methodsPhosphatidylinositol 4-kinase type II (PI4KII) activity was measured using recombinant human PI4KIIα kinase and cell viability was assessed in primary cultured hippocampal neurons. To test effects in vivo, 1.5 μl of 100 nM Aβ and/or 100 nM acetyl-IGL was injected into the hippocampal CA1 region of right hemisphere in transgenic mice expressing V337M human tau protein. Four weeks later, behavior performance in the Morris water maze was tested and after another 2 weeks, sections of brain were prepared for immunohistochemistry.Key findingsAmong the three modified tripeptides, acetyl-IGL attenuated the Aβ-induced inhibition of PI4KII activity as well as enhancement of glutamate neurotoxicity in primary cultured rat hippocampal neurons. Injection of Aβ into the hippocampus of mice impaired spatial memory and increased the number of degenerating neurons in bilateral hippocampal regions. Co-injection of acetyl-IGL prevented the learning impairment as well as the neuronal degeneration induced by Aβ.SignificanceThese results suggest that a modified tripeptide, acetyl-IGL, may be effective in the treatment of Alzheimer's disease.  相似文献   
962.
To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and β-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC50 = 0.567 μM; AChE: IC50 = 1.83 μM), and also showed excellent inhibitory effects on Aβ production of APP transfected HEK293 cells (IC50 = 98.7 nM) and mild protective effect against hydrogen peroxide (H2O2)-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Aβ1–40 production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.  相似文献   
963.
964.
Retinal neovascularization (NV) occurs in various ocular disorders including proliferative diabetic retinopathy, retinopathy of prematurity and secondary neovascular glaucoma, which often result in blindness. Vascular endothelial growth factor (VEGF) is an essential growth factor for angiogenesis, and is particularly regulated by hypoxia inducible factor-1alpha (HIF-1alpha) under hypoxic conditions. Therefore, HIF-1alpha and VEGF could provide targets for therapeutic intervention on retinal NV. In this study, we investigated the inhibitory effects of small interfering RNA (siRNA) targeting HIF-1alpha and VEGF on the expression of HIF-1alpha and VEGF in human umbilical vein endothelial cells (HUVEC) in vitro and on retinal NV in vivo. siRNA-expressing plasmids targeting human HIF-1alpha (HIF-1alpha siRNA) and human VEGF(165) (VEGF siRNA) were constructed. They were transfected and co-transfected to HUVEC and C57BL/6J mice of ischemic retinopathy model. HIF-1alpha siRNA and VEGF siRNA specifically downregulated HIF-1alpha and VEGF at both mRNA and protein levels in vitro and in vivo. Neovascular tufts and neovascular nuclei were decreased in gene therapy group compared to control hypoxia group. Co-transfection of HIF-1alpha siRNA and VEGF siRNA resulted in maximal effects on VEGF suppression in vitro and in vivo. It also manifested the maximal inhibitory effect on retinal NV. These results indicate that the application of HIF-1alpha siRNA and VEGF siRNA technology holds great potential as a novel therapeutic for retinal NV.  相似文献   
965.
Deposition of ubiquitinated protein aggregates is a hallmark of neurodegeneration in both acute neural injuries, such as stroke, and chronic conditions, such as Parkinson's disease, but the underlying mechanisms are poorly understood. In the present study, we examined the role of Zn2+ in ischemia-induced impairment of the ubiquitin-proteasome system in the CA1 region of rat hippocampus after transient global ischemia. We found that scavenging endogenous Zn2+ reduced ischemia-induced ubiquitin conjugation and free ubiquitin depletion. Furthermore, exposure to zinc chloride increased ubiquitination and inhibited proteasomal enzyme activity in cultured hippocampal neurons in a concentration- and time-dependent manner. Further studies of the underlying mechanisms showed that Zn2+-induced ubiquitination required p38 activation. These findings indicate that alterations in Zn2+ homeostasis impair the protein degradation pathway.  相似文献   
966.
967.
Lipoprotein lipase (LPL) is a principal enzyme responsible for the clearance of chylomicrons and very low density lipoproteins from the bloodstream. Two members of the Angptl (angiopoietin-like protein) family, namely Angptl3 and Angptl4, have been shown to inhibit LPL activity in vitro and in vivo. Here, we further investigated the structural basis underlying the LPL inhibition by Angptl3 and Angptl4. By multiple sequence alignment analysis, we have identified a highly conserved 12-amino acid consensus motif that is present within the coiled-coil domain (CCD) of both Angptl3 and Angptl4, but not other members of the Angptl family. Substitution of the three polar amino acid residues (His46, Gln50, and Gln53) within this motif with alanine abolishes the inhibitory effect of Angptl4 on LPL in vitro and also abrogates the ability of Angptl4 to elevate plasma triglyceride levels in mice. The CCD of Angptl4 interacts with LPL and converts the catalytically active dimers of LPL to its inactive monomers, whereas the mutant protein with the three polar amino acids being replaced by alanine loses such a property. Furthermore, a synthetic peptide consisting of the 12-amino acid consensus motif is sufficient to inhibit LPL activity, although the potency is much lower than the recombinant CCD of Angptl4. In summary, our data suggest that the 12-amino acid consensus motif within the CCD of Angptl4, especially the three polar residues within this motif, is responsible for its interaction with and inhibition of LPL by blocking the enzyme dimerization.Lipoprotein lipase (LPL)3 is an endothelium-bound enzyme that catalyzes the hydrolysis of plasma triglyceride (TG) associated with chylomicrons and very low density lipoproteins (1, 2). This enzyme plays a major role in maintaining lipid homeostasis by promoting the clearance of TG-rich lipoproteins from the bloodstream. Abnormality in LPL functions has been associated with a number of pathological conditions, including atherosclerosis, dyslipidemia associated with diabetes, and Alzheimer disease (1).LPL is expressed in a wide variety of cell types, particularly in adipocytes and myocytes (2). As a rate-limiting enzyme for clearance of TG-rich lipoproteins, the activity of LPL is tightly modulated by multiple mechanisms in a tissue-specific manner in response to nutritional changes (3, 4). The enzymatic activity of LPL in adipose tissue is enhanced after feeding to facilitate the storage of TG, whereas it is down-regulated during fasting to increase the utilization of TG by other tissues (5). The active form of LPL is a noncovalent homodimer with the subunits associated in a head-to-tail manner, and the dissociation of its dimeric form leads to the formation of a stable inactive monomeric conformation and irreversible enzyme inactivation (6). At the post-translational level, the LPL activity is regulated by numerous apolipoprotein co-factors. For instance, apoCII, a small apolipoprotein consisting of 79 amino acid residues in human, activates LPL by directly binding to the enzyme (7, 8). By contrast, several other apolipoproteins such as apoCI, apo-CIII, and apoE have been shown to inhibit the LPL activity in vitro (3).Angiopoietin-like proteins (Angptl) are a family of secreted proteins consisting of seven members, Angptl1 to Angptl7 (9, 10). All the members of the Angptl family share a similar domain organization to those of angiopoietins, with an NH2-terminal coiled-coil domain (CCD) and a COOH-terminal fibrinogen-like domain. Among the seven family members, only Angptl3 and Angptl4 have been shown to be involved in regulating triglyceride metabolism (10, 11). The biological functions of Angptl3 in lipid metabolism were first discovered by Koishi et al. (12) in their positional cloning of the recessive mutation gene responsible for the hypolipidemia phenotype in a strain of obese mouse KK/snk. Subsequent studies have demonstrated that Angptl3 increases plasma TG levels by inhibiting the LPL enzymatic activity (1315). Angptl4, also known as fasting-induced adipocyte factor, hepatic fibrinogen/angiopoietin-related protein, or peroxisome proliferator-activated receptor-γ angiopoietin-related, is a secreted glycoprotein abundantly expressed in adipocyte, liver, and placenta (1618). In addition to its role in regulating angiogenesis, a growing body of evidence demonstrated that Angptl4 is an important player of lipid metabolism (10, 11). Elevation of circulating Angptl4 by transgenic or adenoviral overexpression, or by direct supplementation of recombinant protein, leads to a marked elevation in the levels of plasma TG and low density lipoprotein cholesterol in mice (1922). By contrast, Angptl4 knock-out mice exhibit much lower plasma TG and cholesterol levels compared with the wild type littermates (19, 20). Notably, treatment of several mouse models (such as C57BL/6J, ApoE–/–, LDLR–/–, and db/db obese/diabetic mice) with a neutralizing antibody against Angptl4 recapitulate the lipid phenotype found in Angptl4 knock-out mice (19). The role of Angptl4 as a physiological inhibitor of LPL is also supported by the finding that its expression levels in adipose tissue change rapidly during the fed-to-fasting transitions and correlate inversely with LPL activity (23). In humans, a genetic variant of the ANGPTL4 gene (E40K) has been found to be associated with significantly lower plasma TG levels and higher high density lipoprotein cholesterol concentrations in several ethnic groups (2426).Angptl3 and Angptl4 share many common biochemical and functional properties (10). In both humans and rodents, Angptl3 and Angptl4 are proteolytically cleaved at the linker region and circulate in plasma as two truncated fragments, including NH2-terminal CCD and COOH-terminal fibrinogen-like domain (14, 2729). The effects of both Angptl3 and Angptl4 on elevating plasma TG levels are mediated exclusively by their NH2-terminal CCDs (15, 22, 23, 27, 30). The CCDs of Angptl3 and Angptl4 have been shown to inhibit the LPL activity in vitro as well as in mice (23,30,31). Angptl4 inhibits LPL by promoting the conversion of the catalytically active LPL dimers into catalytically inactive LPL monomers, thereby leading to the inactivation of LPL (23, 31). However, the detailed structural and molecular basis underlying the LPL inhibition by Angptl3 and Angptl4 remain poorly characterized at this stage.In this study, we analyzed all known amino acid sequences of Angptl3 and Angptl4 from various species and found a short motif, LAXGLLXLGXGL (where X represents polar amino acid residues), which corresponds to amino acid residues 46–57 and 44–55 of human Angptl3 and Angptl4, respectively, is highly conserved despite the low degree of their overall homology (∼30%). Using both in vitro and in vivo approaches, we demonstrated that this 12-amino acid sequence motif, in particular the three polar amino acid residue within this motif, is essential for mediating the interactions between LPL and Angpt4, which in turn disrupts the dimerization of the enzyme.  相似文献   
968.
Major urinary protein-1 (MUP-1) is a low molecular weight secreted protein produced predominantly from the liver. Structurally it belongs to the lipocalin family, which carries small hydrophobic ligands such as pheromones. However, the physiological functions of MUP-1 remain poorly understood. Here we provide evidence demonstrating that MUP-1 is an important player in regulating energy expenditure and metabolism in mice. Both microarray and real-time PCR analysis demonstrated that the MUP-1 mRNA abundance in the liver of db/db obese mice was reduced by ∼30-fold compared with their lean littermates, whereas this change was partially reversed by treatment with the insulin-sensitizing drug rosiglitazone. In both dietary and genetic obese mice, the circulating concentrations of MUP-1 were markedly decreased compared with the lean controls. Chronic elevation of circulating MUP-1 in db/db mice, using an osmotic pump-based protein delivery system, increased energy expenditure and locomotor activity, raised core body temperature, and decreased glucose intolerance as well as insulin resistance. At the molecular level, MUP-1-mediated improvement in metabolic profiles was accompanied by increased expression of genes involved in mitochondrial biogenesis, elevated mitochondrial oxidative capacity, decreased triglyceride accumulation, and enhanced insulin-evoked Akt signaling in skeletal muscle but not in liver. Altogether, these findings raise the possibility that MUP-1 deficiency might contribute to the metabolic dysregulation in obese/diabetic mice, and suggest that the beneficial metabolic effects of MUP-1 are attributed in part to its ability in increasing mitochondrial function in skeletal muscle.The liver is the primary organ for carbohydrate and lipid metabolism, including gluconeogenesis, glycogenesis, cholesterol biosynthesis, and lipogenesis (1, 2). These metabolic events in the liver are tightly controlled by several pancreatic hormones including insulin and glucagon. In addition, the liver itself is one of the largest endocrine organs in the body, secreting numerous humoral factors involved in the regulation of systemic glucose and lipid homeostasis. The importance of the liver-derived humoral factors in maintaining glucose metabolism is highlighted by the observation that glucose uptake by skeletal muscle is severely impaired by surgical or pharmacological blockade of hepatic parasympathetic nerves (3). In the past several years, a number of liver-derived humoral metabolic factors, including bone morphogenetic protein-9 (BMP-9) (4), fibroblast growth factor 21 (FGF21) (57), retinol-binding protein 4 (RBP4) (8, 9), adropin (10), and angiopoietin-like proteins (Angptl) 3, 4, and 6 (1113), have been identified, and their roles in glucose and lipid metabolism have been characterized in great detail. Noticeably, BMP-9, FGF21, and Angptl6 exhibit potent insulin-sensitizing and glucose-lowering effects in animal models, and they have been proposed as potential candidates for the treatment of insulin resistance and type II diabetes (4, 6, 7, 13).To search for novel liver-derived secretory factors involved in the regulation of glucose homeostasis, we used microarray analysis as a global screening for systematic identification of genes differentially expressed in the liver of C57BLKS db/db mice (a genetically inherited diabetic mouse model that is characterized by severe insulin resistance and hyperglycemia) and their lean littermates. We found that the mRNA level of mouse major urinary protein-1 (MUP-1)2 was markedly down-regulated in db/db mice, and the change was largely normalized upon treatment with the PPARγ agonist rosiglitazone. MUP-1 is a small molecular weight secreted protein abundantly expressed in the liver (14). Its expression in the liver is enhanced by administration of the hepatotoxic agent dimethylnitrosamine (15) but is reduced by interleukin 6-induced acute phase response in mice (16). Like other members of the MUP family, MUP-1 has been proposed to act as a pheromone-binding protein in urine (17), thereby accelerating puberty and promoting aggressive behavior in male mice. However, the precise functions of MUPs have yet to be determined.MUP-1 belongs to the lipocalin superfamily, the members of which share a common tertiary structure with a cup-shaped hydrophobic ligand binding pocket surrounded by an eight-stranded β-barrel (18, 19). This structure confers upon lipocalins the ability to bind and transport a wide variety of small lipophilic substances, including fatty acids, cholesterols, prostaglandins, and pheromones. Noticeably, several members of the lipocalin family, including RBP4, lipocalin-2, and adipocyte fatty acid-binding protein (A-FABP), have recently been shown to be important mediators of obesity-related insulin resistance and glucose intolerance (8, 2022). Unlike MUP-1, the expression of RBP4, lipocalin-2, and A-FABP are elevated in obesity and diabetes (9, 20, 23).In this study, we investigated the metabolic role of MUP-1 in mice. Our results demonstrated that MUP-1 was abundantly present in the circulation. In genetic and dietary obese mouse models, the serum and urine concentrations of MUP-1 were remarkably decreased. Replenishment of recombinant MUP-1 led to improved glucose tolerance and insulin sensitivity, as well as increased energy expenditure and locomotor activity in db/db diabetic mice. Our data suggest that MUP-1 not only serves as a circulating biomarker, negatively correlated with obesity-related metabolic disorders, but also plays an active role in regulating energy homeostasis and insulin sensitivity in mice.  相似文献   
969.
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号