首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21675篇
  免费   1877篇
  国内免费   1377篇
  2024年   36篇
  2023年   197篇
  2022年   509篇
  2021年   849篇
  2020年   620篇
  2019年   785篇
  2018年   835篇
  2017年   627篇
  2016年   930篇
  2015年   1402篇
  2014年   1627篇
  2013年   1704篇
  2012年   2010篇
  2011年   1925篇
  2010年   1147篇
  2009年   1090篇
  2008年   1254篇
  2007年   1152篇
  2006年   1042篇
  2005年   882篇
  2004年   861篇
  2003年   686篇
  2002年   550篇
  2001年   361篇
  2000年   289篇
  1999年   256篇
  1998年   192篇
  1997年   152篇
  1996年   149篇
  1995年   118篇
  1994年   110篇
  1993年   63篇
  1992年   88篇
  1991年   70篇
  1990年   80篇
  1989年   62篇
  1988年   44篇
  1987年   45篇
  1986年   27篇
  1985年   27篇
  1984年   33篇
  1983年   13篇
  1982年   10篇
  1981年   7篇
  1980年   2篇
  1978年   2篇
  1967年   2篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 968 毫秒
211.
Halide perovskite materials have achieved overwhelming success in various optoelectronic applications, especially perovskite solar cells and perovskite‐based light‐emitting diodes (P‐LEDs), owing to their outstanding optical and electric properties. It is widely believed that flat and mirror‐like perovskite films are imperative for achieving high device performance, while the potential of other perovskite morphologies, such as the emerging textured perovskite, is overlooked, which leaves plenty of room for further breakthroughs. Compared to flat and mirror‐like perovskites, textured perovskites with unique structures, e.g., coral‐like, maze‐like, column‐like or quasi‐core@shell assemblies, are more efficient at light harvesting and charge extraction, thus revolutionizing the pathways toward ultrahigh performance in perovskite‐based optoelectronic devices. Employing a textured perovskite morphology, the record of external quantum efficiency for P‐LEDs is demonstrated as 21.6%. In this research news, recent progress in the utilization of textured perovskite is summarized, with the emphasis on the preparation strategies and prominent optoelectronic properties. The impact of the textured morphology on light harvesting, carrier dynamic management, and device performance is highlighted. Finally, the challenges and great potential of employing these innovative morphologies in fabricating more efficient optoelectronic devices, or creating a new energy harvesting and conversion regime are also provided.  相似文献   
212.
The digital twin technique has been broadly utilized to efficiently and effectively predict the performance and problems associated with real objects via a virtual replica. However, the digitalization of twin electrochemical systems has not been achieved thus far, owing to the large amount of required calculations of numerous and complex differential equations in multiple dimensions. Nevertheless, with the help of continuous progress in hardware and software technologies, the fabrication of a digital twin‐driven electrochemical system and its effective utilization have become a possibility. Herein, a digital twin‐driven all‐solid‐state battery with a solid sulfide electrolyte is built based on a voxel‐based microstructure. Its validity is verified using experimental data, such as effective electronic/ionic conductivities and electrochemical performance, for LiNi0.70Co0.15Mn0.15O2 composite electrodes employing Li6PS5Cl. The fundamental performance of the all‐solid‐state battery is scrutinized by analyzing simulated physical and electrochemical behaviors in terms of mass transport and interfacial electrochemical reaction kinetics. The digital twin model herein reveals valuable but experimentally inaccessible time‐ and space‐resolved information including dead particles, specific contact area, and charge distribution in the 3D domain. Thus, this new computational model is bound to rapidly improve the all‐solid‐state battery technology by saving the research resources and providing valuable insights.  相似文献   
213.
Highly stretchable self‐powered energy sources are promising options for powering diverse wearable smart electronics. However, commercially existing energy sources are disadvantaged by tensile strain limitations and constrained deformability. Here, 1D thread‐based highly stretchable triboelectric nanogenerators (HS‐TENGs), a crucial step toward overcoming these obstacles, are developed based on a highly stretchable coaxial‐type poly[styrene‐b‐isoprene‐b‐styrene] (SIS) elastomer tube. Carbon conductive ink is injected into the SIS tube as a core 1D electrode that remains almost unaffected even under 250% stretching because of its low Young's modulus. To further facilitate power generation by the HS‐TENG, a composite of barium titanate nanoparticles (BaTiO3 NPs) and polydimethylsiloxane (PDMS) is coated on the initial SIS tube to modulate the dielectric permittivity based on variations in the BaTiO3 NPs volume ratio. The 1D PDMS/BaTiO3 NP composite‐coated SIS and a nylon 6‐coated 2D Ni–Cu conductive fabric are selected as triboelectric bottom and top layers, respectively. Woven HS‐TENGs textiles yield consistent power output under various extreme and harsh conditions, including folded, twisted, and washed states. These experimental findings indicate that the approach may become useful for realizing stretchable multifunctional power sources for various wearable electronics.  相似文献   
214.
In this review, the recent progress in using transient absorption microscopy to image charge transport and dynamics in semiconducting hybrid organic–inorganic perovskites is discussed. The basic principles, instrumentation, and resolution of transient absorption microscopy are outlined. With temporal resolution as high as 10 fs, sub‐diffraction‐limit spatial resolution, and excited‐state structural resolution, these experiments have provided crucial details on charge transport mechanisms that have been previously obscured in conventional ultrafast spectroscopy measurements. Morphology‐dependent mapping unveils spatial heterogeneity in carrier recombination and cooling dynamics. By spatially separating the pump and probe beams, carrier transport across grain boundaries has been directly visualized. Further, femtosecond temporal resolution allows for the examination of nonequilibrium transport directly, revealing extraordinarily long‐range hot carrier migration. The application of transient absorption microscopy is not limited to hybrid perovskites but can also be useful for other polycrystalline materials in which morphology plays an important role in carrier transport.  相似文献   
215.
216.
For efficient catalysis and electrocatalysis well‐designed, high‐surface‐area support architectures covered with highly dispersed metal nanoparticles with good catalyst‐support interactions are required. In situ grown Ni nanoparticles on perovskites have been recently reported to enhance catalytic activities in high‐temperature systems such as solid oxide cells (SOCs). However, the micrometer‐scale primary particles prepared by conventional solid‐state reactions have limited surface area and tend to retain much of the active catalytic element within the bulk, limiting efficacy of such exsolution processes in low‐temperature systems. Here, a new, highly efficient, solvothermal route is demonstrated to exsolution from smaller scale primary particles. Furthermore, unlike previous reports of B‐site exsolution, it seems that the metal nanoparticles are exsolved from the A‐site of these perovskites. The catalysts show large active site areas and strong metal‐support interaction (SMSI), leading to ≈26% higher geometric activity (25 times higher mass activity with 1.4 V of Eon‐set) and stability for oxygen‐evolution reaction (OER) with only 0.72 µg base metal contents compared to typical 20 wt% Ni/C and even commercial 20 wt% Ir/C. The findings obtained here demonstrate the potential design and development of heterogeneous catalysts in various low‐temperature electrochemical systems including alkaline fuel cells and metal–air batteries.  相似文献   
217.
The introduction of 3D wettable current collectors is one of the practical strategies toward realizing high reversibility of lithium (Li) metal anodes, yet its effect is usually insufficient owing to single electron‐conductive skeleton. Here, homogeneous Li deposition behavior and enhanced Coulombic efficiency is reported for electrochemically lithiated Cu3P nanowires, owing to the formation of a mixed ion/electron‐conducting skeleton (MIECS). In particular, by evaluating the Gibbs free energy change, the possible chemical reaction between Cu3P and molten Li is used to construct a MIECS containing Li3P and Cu–Li alloy phase. The successful conversion of Cu3P nanowires to Li3P and Cu–Li alloy nanocomposite not only greatly reduces the surface energy between molten Li and Cu3P, but also induces uniform Li stripping/plating behavior via balanced ion/electron transport. Thus, the as‐obtained Li@MIECS composite anode displays superior cycling stability in both symmetric cells and full cells. This work provides a promising option for the preparation of high‐performance composite Li anodes containing MIECS by thermally pre‐storing Li.  相似文献   
218.
219.
220.
The pursuit of more efficient carbon‐based anodes for sodium‐ion batteries (SIBs) prepared from facile and economical methods is a very important endeavor. Based on the crystallinity difference within carbon materials, herein, a low‐temperature selective burning method is developed for preparing oxygen and nitrogen codoped holey graphene aerogel as additive‐free anode for SIBs. By selective burning of a mixture of graphene and low‐crystallinity carbon at 450 °C in air, an elastic porous graphene monolith with abundant holes on graphene sheets and optimized crystallinity is obtained. These structural characteristics lead to an additive‐free electrode with fast charge (ions and electrons) transfer and more abundant Na+ storage active sites. Moreover, the heteroatom oxygen/nitrogen doping favors large interlayer distance for rapid Na+ insertion/extraction and provides more active sites for high capacitive contribution. The optimized sample exhibits superior sodium‐ion storage capability, i.e., high specific capacity (446 mAh g?1 at 0.1 A g?1), ultrahigh rate capability (189 mAh g?1 at 10 A g?1), and long cycle life (81.0% capacity retention after 2000 cycles at 5 A g?1). This facile and economic strategy might be extended to fabricating other superior carbon‐based energy storage materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号