首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15766篇
  免费   1384篇
  国内免费   1338篇
  18488篇
  2024年   45篇
  2023年   232篇
  2022年   476篇
  2021年   763篇
  2020年   632篇
  2019年   714篇
  2018年   704篇
  2017年   510篇
  2016年   687篇
  2015年   1031篇
  2014年   1239篇
  2013年   1263篇
  2012年   1460篇
  2011年   1309篇
  2010年   887篇
  2009年   730篇
  2008年   782篇
  2007年   702篇
  2006年   686篇
  2005年   555篇
  2004年   483篇
  2003年   514篇
  2002年   396篇
  2001年   243篇
  2000年   211篇
  1999年   204篇
  1998年   138篇
  1997年   112篇
  1996年   115篇
  1995年   109篇
  1994年   93篇
  1993年   57篇
  1992年   78篇
  1991年   64篇
  1990年   60篇
  1989年   44篇
  1988年   28篇
  1987年   24篇
  1986年   34篇
  1985年   25篇
  1984年   13篇
  1983年   7篇
  1982年   8篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1976年   2篇
  1970年   1篇
  1962年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Zinc finger protein 217 (ZNF217) is essential for cell proliferation and has been implicated in tumorigenesis. However, its expression and exact roles in colorectal cancer (CRC) remain unclear. In this study, we demonstrated that ZNF217 expression was aberrantly upregulated in CRC tissues and associated with poor overall survival of CRC patients. In addition, we found that ZNF217 was a putative target of microRNA (miR)-203 using bioinformatics analysis and confirmed that using luciferase reporter assay. Moreover, in vitro knockdown of ZNF217 or enforced expression of miR-203 attenuated CRC cell proliferation, invasion and migration. Furthermore, combined treatment of ZNF217 siRNA and miR-203 exhibited synergistic inhibitory effects. Taken together, our results provide new evidences that ZNF217 has an oncogenic role in CRC and is regulated by miR-203, and open up the possibility of ZNF217- and miR-203-targeted therapy for CRC.  相似文献   
102.
Chemokine receptor CXCR4 plays an important role in the immune system and the cellular entry of human immunodeficiency virus type 1 (HIV-1). To probe the stereospecificity of the CXCR4-ligand interface, d-amino acid peptides derived from natural chemokines, viral macrophage inflammatory protein II (vMIP-II) and stromal cell-derived factor-1alpha (SDF-1alpha), were synthesized and found to compete with (125)I-SDF-1alpha and monoclonal antibody 12G5 binding to CXCR4 with potency and selectivity comparable with or higher than their l-peptide counterparts. This was surprising because of the profoundly different side chain topologies between d- and l-enantiomers, which circular dichroism spectroscopy showed adopt mirror image conformations. Further direct binding experiments using d-peptide labeled with fluorescein (designated as FAM-DV1) demonstrated that d- and l-peptides shared similar or at least overlapping binding site(s) on the CXCR4 receptor. Structure-activity analyses of related peptide analogs of mixed chiralities or containing alanine replacements revealed specific residues at the N-terminal half of the peptides as key binding determinants. Acting as CXCR4 antagonists and with much higher biological stability than l-counterparts, the d-peptides showed significant activity in inhibiting the replication of CXCR4-dependent HIV-1 strains. These results show the remarkable stereochemical flexibility of the CXCR4-peptide interface. Further studies to understand the mechanism of this unusual feature of the CXCR4 binding surface might aid the development of novel CXCR4-binding molecules like the d-peptides that have high affinity and stability.  相似文献   
103.
核糖核酸酶抑制因子 (ribonucleaseinhibitor,RI)是广泛存在于哺乳动物细胞浆中的一种酸性糖蛋白 .为了进一步了解RI的功能 ,根据RI分子结构富含巯基的特点 ,研究了RI对过氧化氢(H2 O2 )损伤的大鼠神经胶质瘤细胞 (C6 )的影响 .用不同浓度的H2 O2 分别作用于转染有RIcDNA并且RI过表达的C6细胞和正常C6细胞 ,对比损伤前后 2者的细胞存活率、LDH漏出量、细胞内GSH和MDA含量差别 ,以及细胞内抗氧化酶类GPX、CAT和GST活性的差别 .结果表明 ,与正常C6细胞相比 ,RI过表达的C6细胞在H2 O2 作用下存活率高 ,LDH漏出量、MDA含量明显减少 ,而细胞内GSH较多 ;RI过表达的C6细胞在损伤前后均表现出更强的CAT和GST活性 .提示RI具有抗氧化功能 ,能够减轻H2 O2 所致的细胞过氧化损伤 .  相似文献   
104.
Recombinant adeno-associated virus (rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1 (rHSV-1) designated HSV1-rc/AUL2, which expressed adeno-associated virus type2 (AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein (GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/AUL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit (TU) or 4.28×104 particles per cell. Therefore, compared  相似文献   
105.
The present study explores the dietary effect of pectin on the MLN lymphocyte functions of mice with dextran sulfate sodium (DS)-induced colitis. We found that the immunoglobulin (Ig)A level in mesenteric lymph node (MLN) lymphocytes was high, while the IgE level was lower, in mice fed with pectin than in those fed with cellulose. Interestingly, the fecal IgA concentration of the pectin-fed mice was significantly higher than that of the cellulose-fed mice. The concentrations of interferon-gamma and interleukin (IL)-2 treated with concanavalin A (ConA) were significantly higher in the pectin-fed group than in the cellulose-fed group. Although dietary pectin did not affect the IL-4 and IL-10 levels, the activation-induced IL-4 and IL-10 secretion was lower in MLN cells of the pectin-fed mice than of the cellulose-fed mice following DS-induced colitis. Based on these findings, we propose that the effect of dietary pectin on mice with DS-induced colitis is mediated by the manipulation of Th1 cells. Furthermore, the inhibitory effect of IL-4 and IL-10 by dietary pectin may play an important role in promoting a change in Th1/Th2 balance toward Th1-dominant immunity.  相似文献   
106.
Hypoxic/ischemic injury to kidney is a frequently encountered clinical problem with limited therapeutic options. Since microRNAs are differentially involved in hypoxic/ischemic events and δ-opioid receptor (DOR) activation is known to protect against hypoxic/ischemic injury, we speculated on the involvement of DOR activation in altering the microRNA (miRNA) expression in kidney under hypoxic condition. We selected 31 miRNAs based on microarray data for quantitative PCR analysis. Among them, 14 miRNAs were significantly altered after prolonged hypoxia, DOR activation or a combination of both. We found that 1) DOR activation alters miRNA expression profiles in normoxic conditions; 2) hypoxia differentially alters miRNA expression depending on the duration of hypoxia; and 3) DOR activation can modify hypoxia-induced changes in miRNA expression. For example, 10-day hypoxia reduced the level of miR-212 by over 70%, while DOR activation could mimic such reduction even in normoxic kidney. In contrast, the same stress increased miR-29a by >100%, which was reversed following DOR activation. These first data suggest that hypoxia comprehensively modifies the miRNA profile within the kidney, which can be mimicked or modified by DOR activation. Ascertaining the targeted pathways that regulate the diverse cellular and molecular functions of miRNA may provide new insights into potential therapies for hypoxic/ischemic injury of the kidney.  相似文献   
107.
Kinesin-13s are microtubule (MT) depolymerases different from most other kinesins that move along MTs. Like other kinesins, they have a motor or head domain (HD) containing a tubulin and an ATP binding site. Interestingly, kinesin-13s have an additional binding site (Kin-Tub-2) on the opposite side of the HD that contains several family conserved positively charged residues. The role of this site in kinesin-13 function is not clear. To address this issue, we investigated the in-vitro and in-vivo effects of mutating Kin-Tub-2 family conserved residues on the Drosophila melanogaster kinesin-13, KLP10A. We show that the Kin-Tub-2 site enhances tubulin cross-linking and MT bundling properties of KLP10A in-vitro. Disruption of the Kin-Tub-2 site, despite not having a deleterious effect on MT depolymerization, results in abnormal mitotic spindles and lagging chromosomes during mitosis in Drosophila S2 cells. The results suggest that the additional Kin-Tub-2 tubulin biding site plays a direct MT attachment role in-vivo.  相似文献   
108.
α-Hemolysin (α-HL) is a self-assembling, channel-forming toxin that is produced as a soluble monomer by Staphylococcus aureus strains. Until now, α-HL has been a significant virulence target for the treatment of S. aureus infection. In our previous report, we demonstrated that some natural compounds could bind to α-HL. Due to the binding of those compounds, the conformational transition of α-HL from the monomer to the oligomer was blocked, which resulted in inhibition of the hemolytic activity of α-HL. However, these results have not indicated how the binding of the α-HL inhibitors influence the conformational transition of the whole protein during the oligomerization process. In this study, we found that three natural compounds, Oroxylin A 7-O-glucuronide (OLG), Oroxin A (ORA), and Oroxin B (ORB), when inhibiting the hemolytic activity of α-HL, could bind to the “stem” region of α-HL. This was completed using conventional Molecular Dynamics (MD) simulations. By interacting with the novel binding sites of α-HL, the ligands could form strong interactions with both sides of the binding cavity. The results of the principal component analysis (PCA) indicated that because of the inhibitors that bind to the “stem” region of α-HL, the conformational transition of α-HL from the monomer to the oligomer was restricted. This caused the inhibition of the hemolytic activity of α-HL. This novel inhibition mechanism has been confirmed by both the steered MD simulations and the experimental data obtained from a deoxycholate-induced oligomerization assay. This study can facilitate the design of new antibacterial drugs against S. aureus.  相似文献   
109.

Background

Diabetic patients on peritoneal dialysis (PD) have lower survival and are more likely complicated with inflammation than their non-diabetic counterparts. Here, we explored the interaction effects between diabetes and inflammation on the survival of PD patients.

Methods

Overall, 2,264 incident patients were enrolled from a retrospective cohort study in China. Patients were grouped according to the baseline levels of high-sensitive C-reactive protein (hsCRP, ≤3 mg/L or >3 mg/L) or serum albumin (SA, ≥38 g/L or <38 g/L). Then, several multivariable adjusted stratified Cox regression models were constructed for these groups to explore the predicted role of diabetes on all-cause or cardiovascular death under inflammatory or non-inflammatory conditions.

Results

Diabetics on PD were more likely to have inflammation than non-diabetics on PD, and they presented with elevated hsCRP (52.7% vs. 47.3%, P = 0.03) or decreased SA (77.9% vs. 62.7%, P < 0.001) levels. After stratification by size of center and controlling for confounding factors, diabetes was found to predict all-cause death in patients with hsCRP >3 mg/L or SA <38 g/L but not in patients with hsCRP ≤3 mg/L or SA ≥38 g/L. Similarly, the presence of diabetes was an indication of cardiovascular death in patients with hsCRP >3 mg/L or SA <38 g/L. However, if further adjusted by baseline cardiovascular disease, the predicted role of diabetes on death related to cardiovascular disease in patients with SA <38 g/L disappeared.

Conclusion

Diabetic patients could do as well as non-diabetic patients without inflammation on peritoneal dialysis. Active strategies should be implemented to improve inflammation status in diabetic patients on PD.  相似文献   
110.
Biallelic inactivation of LKB1, a serine/threonine kinase, has been detected in 30% of lung adenocarcinomas, and inhibition of breast tumor growth has been demonstrated. We have identified the tumor suppressor, Nischarin, as a novel binding partner of LKB1. Our mapping analysis shows that the N terminus of Nischarin interacts with amino acids 44–436 of LKB1. Time lapse microscopy and Transwell migration data show that the absence of both Nischarin and LKB1 from an invasive breast cancer cell line (MDA-MB-231) enhances migration as measured by increased distance and speed of migrating cells. Our data suggest that this is a result of elevated PAK1 and LIMK1 phosphorylation. Moreover, the absence of Nischarin and LKB1 increased tumor growth in vivo. Consistent with this, the percentage of S phase cells was increased, as demonstrated by flow cytometry and enhanced cyclin D1. The absence of Nischarin and LKB1 also led to a dramatic increase in the formation of lung metastases. Our studies, for the first time, demonstrate functional interaction between LKB1 and Nischarin to inhibit cell migration and breast tumor progression. Mechanistically, we show that these two proteins together regulate PAK-LIMK-Cofilin and cyclin D1/CDK4 pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号