首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20147篇
  免费   1750篇
  国内免费   1377篇
  23274篇
  2024年   50篇
  2023年   258篇
  2022年   543篇
  2021年   863篇
  2020年   707篇
  2019年   829篇
  2018年   831篇
  2017年   635篇
  2016年   864篇
  2015年   1292篇
  2014年   1525篇
  2013年   1589篇
  2012年   1865篇
  2011年   1693篇
  2010年   1165篇
  2009年   949篇
  2008年   1066篇
  2007年   972篇
  2006年   907篇
  2005年   761篇
  2004年   672篇
  2003年   672篇
  2002年   564篇
  2001年   269篇
  2000年   251篇
  1999年   250篇
  1998年   164篇
  1997年   139篇
  1996年   134篇
  1995年   124篇
  1994年   107篇
  1993年   65篇
  1992年   86篇
  1991年   79篇
  1990年   65篇
  1989年   49篇
  1988年   32篇
  1987年   31篇
  1986年   37篇
  1985年   29篇
  1984年   17篇
  1983年   10篇
  1982年   8篇
  1981年   6篇
  1979年   7篇
  1976年   5篇
  1975年   4篇
  1971年   3篇
  1970年   3篇
  1968年   3篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCl). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 microA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degrees C.  相似文献   
992.
Using off-resonance Raman spectroscopy, we have examined each complex along the catalytic pathway of the DNA repair enzyme uracil DNA glycosylase (UDG). The binding of undamaged DNA to UDG results in decreased intensity of the DNA Raman bands, which can be attributed to an increased level of base stacking, with little perturbation in the vibrational modes of the DNA backbone. A specific complex between UDG and duplex DNA containing 2'-beta-fluorodeoxyuridine shows similar increases in the level of DNA base stacking, but also a substrate-directed conformational change in UDG that is not observed with undamaged DNA, consistent with an induced-fit mechanism for damage site recognition. The similar increases in the level of DNA base stacking for the nonspecific and specific complexes suggest a common enzyme-induced distortion in the DNA, potentially DNA bending. The difference spectrum of the extrahelical uracil base in the substrate-analogue complexes reveals only a small electron density reorganization in the uracil ring for the ground state complex, but large 34 cm(-)(1) downshifts in the carbonyl normal modes. Thus, UDG activates the uracil ring in the ground state mainly through H bonds to its C=O groups, without destroying its quasi-aromaticity. This result is at variance with the conclusion from a recent crystal structure, in which the UDG active site significantly distorts the flipped-out pseudouridine analogue such that a change in hybridization at C1 occurs [Parikh, S. S., et al. (2000) Proc. Natl. Acad. Sci. USA 97, 5083]. The Raman vibrational signature of the bound uracil product differs significantly from that of free uracil at neutral pH, and indicates that the uracil is anionic. This is consistent with recent NMR results, which established that the enzyme stabilizes the uracil anion leaving group by 3.4 pK(a) units compared to aqueous solution, contributing significantly to catalysis. These observations are generally not apparent from the high-resolution crystal structures of UDG and its complexes with DNA; thus, Raman spectroscopy can provide unique and valuable insights into the nature of enzyme-DNA interactions.  相似文献   
993.
Editorial     

Editorial Board

Editorial  相似文献   
994.
Nectin-2 is a cell adhesion molecule encoded by a member of the poliovirus receptor gene family. This family consists of human, monkey, rat, and murine genes that are members of the immunoglobulin gene superfamily. Nectin-2 is a component of cell-cell adherens junctions and interacts with l-afadin, an F-actin-binding protein. Disruption of both alleles of the murine nectin-2 gene resulted in morphologically aberrant spermatozoa with defects in nuclear and cytoskeletal morphology and mitochondrial localization. Homozygous null males are sterile, while homozygous null females, as well as heterozygous males and females, are fertile. The production by nectin-2(-/-) mice of normal numbers of spermatozoa containing wild-type levels of DNA suggests that Nectin-2 functions at a late stage of germ cell development. Consistent with such a role, Nectin-2 is expressed in the testes only during the later stages of spermatogenesis. The structural defects observed in spermatozoa of nectin-2(-/-) mice suggest a role for this protein in organization and reorganization of the cytoskeleton during spermiogenesis.  相似文献   
995.
By using specific anti-ACAT-1 antibodies in immunodepletion studies, we previously found that ACAT-1, a 50-kDa protein, plays a major catalytic role in the adult human liver, adrenal glands, macrophages, and kidneys but not in the intestine. Acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity in the intestine may be largely derived from a different ACAT protein. To test this hypothesis, we produced specific polyclonal anti-ACAT-2 antibodies that quantitatively immunodepleted human ACAT-2, a 46-kDa protein expressed in Chinese hamster ovary cells. In hepatocyte-like HepG2 cells, ACAT-1 comprises 85-90% of the total ACAT activity, with the remainder attributed to ACAT-2. In adult intestines, most of the ACAT activity can be immunodepleted by anti-ACAT-2. ACAT-1 and ACAT-2 do not form hetero-oligomeric complexes. In differentiating intestinal enterocyte-like Caco-2 cells, ACAT-2 protein content increases by 5-10-fold in 6 days, whereas ACAT-1 protein content remains relatively constant. In the small intestine, ACAT-2 is concentrated at the apices of the villi, whereas ACAT-1 is uniformly distributed along the villus-crypt axis. In the human liver, ACAT-1 is present in both fetal and adult hepatocytes. In contrast, ACAT-2 is evident in fetal but not adult hepatocytes. Our results collectively suggest that in humans, ACAT-2 performs significant catalytic roles in the fetal liver and in intestinal enterocytes.  相似文献   
996.
Activation of cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. Although cyclin gene expression has been extensively studied in plants, not much is known at the level of the protein stability and function. Here, we demonstrated by using the highly synchronizable tobacco BY2 cell culture, that endogenous cyclin B1 protein undergoes cell cycle-dependent proteolysis and is stabilized when the spindle checkpoint has been activated. Furthermore, we established transgenic tobacco BY2 cell cultures expressing under the control of an inducible promoter, cyclin B1 protein as well as its non-degradable form as fusion proteins with GFP and found that the ectopic expression of these proteins did not dramatically disturb the cell cycle progression. These results indicate that, to a certain extent, cell cycle exit is possible without cyclin B1 proteolysis.  相似文献   
997.
Lee SJ  Lee JH  Jin HJ  Lee JH  Ryu HY  Kim Y  Kong IS  Kim KW 《Molecules and cells》2000,10(2):236-240
We designed a basic unit of the modified chicken gonadotropin releasing hormone II (cGnRH-II) peptide containing a trypsin cleavable linker peptide at both ends of the original peptide. We made a synthetic DNA coding for the modified cGnRH-II peptide with asymmetric and complementary cohesive ends of linker nucleotides. A tandemly repeated DNA cassette for the expression of concatameric short peptide multimers was constructed by ligating the basic units. The expressed peptide multimers were purified and subject to amino-terminal sequence analysis, which displayed the amino acid sequences expected from the designed nucleotides of the expression cassette. The monomeric cGnRH-II peptide analogs were generated after trypsin digestion. The present results showed that the technique developed for the production of the concatameric peptide multimers with cleavable linker peptides can be generally applicable to the production of short peptide analogs.  相似文献   
998.
Clusterin has been known to play important roles in cell-cell and/or cell-substratum interactions. Recently we reported the transient expression of clusterin in pancreatic endocrine cells during the early developmental stages and suggested a role in aggregating the endocrine cells for islet formation. In the present study, we have investigated the involvement of clusterin in cell-substratum interaction by the inhibition of clusterin synthesis using antisense oligonucleotide. The expression of clusterin was transiently increased as early as 2–8 h after plating the ASC-17D Sertoli cells to the culture flask, which was the period of cell attachment. In addition, up-regulation of clusterin mRNA was so much greater when the Sertoli cells were plated on the petri dish for the bacterial culture instead of in a animal cell culture flask that therefore, the cells failed to attach to it. These findings suggested that interruption of cell to plate substratum interaction might lead to over-expression of clusterin from Sertoli cells to induce cell to cell aggregation or, perhaps, to re-establish attachment with the substratum. Transfection of ASC-17D Sertoli cells with a 20-base antisense oligonucleotide against clusterin mRNA resulted in extracellular release of LDH and DNA fragmentation. Sertoli cell death by antisense oligonucleotide of clusterin was sequence specific and dose dependent. Treatment of antisense oligonucleotide induced a marked reduction of synthesis for clusterin protein, but not for clusterin mRNA expression, suggesting the translational suppression of clusterin by antisense oligonucleotide. Further, microscopic observation showed that more noticeable cell death was induced by treating the antisense prior to plating the cells than by treating after cell attachment to the plate. From these results, we speculate that down-regulation of clusterin expression in the anchorage-dependent Sertoli cells prevents them from attaching to the plate, and therefore induces cell death.  相似文献   
999.
Allogeneic bone marrow transplantation (in immunocompetent adults) has always required cytoreductive treatment of recipients with irradiation or cytotoxic drugs to achieve lasting engraftment at levels detectable by non-PCR-based techniques ('macrochimerism' or 'mixed chimerism'). Only syngeneic marrow engraftment at such levels has been achieved in unconditioned hosts. This requirement for potentially toxic myelosuppressive host pre-conditioning has precluded the clinical use of allogeneic bone marrow transplantation for many indications other than malignancies, including tolerance induction. We demonstrate here that treatment of naive mice with a high dose of fully major histocompatibility complex-mismatched allogeneic bone marrow, followed by one injection each of monoclonal antibody against CD154 and cytotoxic T-lymphocyte antigen 4 immunoglobulin, resulted in multi-lineage hematopoietic macrochimerism (of about 15%) that persisted for up to 34 weeks. Long-term chimeras developed donor-specific tolerance (donor skin graft survival of more than 145 days) and demonstrated ongoing intrathymic deletion of donor-reactive T cells. A protocol of high-dose bone marrow transplantation and co-stimulatory blockade can thus achieve allogeneic bone marrow engraftment without cytoreduction or T-cell depletion of the host, and eliminates a principal barrier to the more widespread use of allogeneic bone marrow transplantation. Although efforts have been made to minimize host pre-treatment for allogeneic bone marrow transplantation for tolerance induction, so far none have succeeded in eliminating pre-treatment completely. Our demonstration that this can be achieved provides the rationale for a safe approach for inducing robust transplantation tolerance in large animals and humans.  相似文献   
1000.
Protein kinase GCN2 regulates translation in amino acid-starved cells by phosphorylating elF2. GCN2 contains a regulatory domain related to histidyl-tRNA synthetase (HisRS) postulated to bind multiple deacylated tRNAs as a general sensor of starvation. In accordance with this model, GCN2 bound several deacylated tRNAs with similar affinities, and aminoacylation of tRNAphe weakened its interaction with GCN2. Unexpectedly, the C-terminal ribosome binding segment of GCN2 (C-term) was required in addition to the HisRS domain for strong tRNA binding. A combined HisRS+ C-term segment bound to the isolated protein kinase (PK) domain in vitro, and tRNA impeded this interaction. An activating mutation (GCN2c-E803V) that weakens PK-C-term association greatly enhanced tRNA binding by GCN2. These results provide strong evidence that tRNA stimulates the GCN2 kinase moiety by preventing an inhibitory interaction with the bipartite tRNA binding domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号