首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58617篇
  免费   17490篇
  国内免费   2621篇
  2024年   54篇
  2023年   411篇
  2022年   1070篇
  2021年   2105篇
  2020年   3219篇
  2019年   4954篇
  2018年   5017篇
  2017年   5033篇
  2016年   5377篇
  2015年   5923篇
  2014年   6046篇
  2013年   6661篇
  2012年   4856篇
  2011年   4252篇
  2010年   4736篇
  2009年   3236篇
  2008年   2395篇
  2007年   1732篇
  2006年   1658篇
  2005年   1456篇
  2004年   1311篇
  2003年   1186篇
  2002年   1098篇
  2001年   868篇
  2000年   690篇
  1999年   643篇
  1998年   351篇
  1997年   297篇
  1996年   288篇
  1995年   264篇
  1994年   267篇
  1993年   171篇
  1992年   211篇
  1991年   148篇
  1990年   137篇
  1989年   119篇
  1988年   100篇
  1987年   68篇
  1986年   78篇
  1985年   54篇
  1984年   47篇
  1983年   38篇
  1982年   19篇
  1981年   8篇
  1980年   11篇
  1979年   10篇
  1977年   6篇
  1976年   6篇
  1975年   7篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
972.
973.
Rhamnogalacturonan‐II (RG‐II) is structurally the most complex glycan in higher plants, containing 13 different sugars and 21 distinct glycosidic linkages. Two monomeric RG‐II molecules can form an RG‐II‐borate diester dimer through the two apiosyl (Api) residues of side chain A to regulate cross‐linking of pectin in the cell wall. But the relationship of Api biosynthesis and RG‐II dimer is still unclear. In this study we investigated the two homologous UDP‐D‐apiose/UDP‐D‐xylose synthases (AXSs) in Arabidopsis thaliana that synthesize UDP‐D‐apiose (UDP‐Api). Both AXSs are ubiquitously expressed, while AXS2 has higher overall expression than AXS1 in the tissues analyzed. The homozygous axs double mutant is lethal, while heterozygous axs1/+ axs2 and axs1 axs2/+ mutants display intermediate phenotypes. The axs1/+ axs2 mutant plants are unable to set seed and die. By contrast, the axs1 axs2/+ mutant plants exhibit loss of shoot and root apical dominance. UDP‐Api content in axs1 axs2/+ mutants is decreased by 83%. The cell wall of axs1 axs2/+ mutant plants is thicker and contains less RG‐II‐borate complex than wild‐type Col‐0 plants. Taken together, these results provide direct evidence of the importance of AXSs for UDP‐Api and RG‐II‐borate complex formation in plant growth and development.  相似文献   
974.
975.
976.
The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide‐binding leucine‐rich repeat protein (NLR)‐encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA‐Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.  相似文献   
977.
978.
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water‐limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs), mesophyll conductance (gm) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin–Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole‐plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号