首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1029篇
  免费   61篇
  2023年   7篇
  2022年   10篇
  2021年   14篇
  2020年   14篇
  2019年   14篇
  2018年   17篇
  2017年   18篇
  2016年   28篇
  2015年   37篇
  2014年   40篇
  2013年   69篇
  2012年   84篇
  2011年   67篇
  2010年   40篇
  2009年   42篇
  2008年   59篇
  2007年   62篇
  2006年   60篇
  2005年   57篇
  2004年   50篇
  2003年   44篇
  2002年   36篇
  2001年   19篇
  2000年   10篇
  1999年   14篇
  1998年   10篇
  1997年   9篇
  1996年   6篇
  1995年   10篇
  1994年   11篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   7篇
  1989年   9篇
  1988年   7篇
  1987年   8篇
  1986年   9篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1973年   3篇
  1972年   3篇
  1968年   9篇
  1966年   6篇
  1965年   2篇
  1964年   6篇
排序方式: 共有1090条查询结果,搜索用时 109 毫秒
131.
132.
3Beta-hydroxysterol Delta(14)-reductase operates during the conversion of lanosterol to cholesterol in mammalian cells. Besides the endoplasmic reticulum 3beta-hydroxysterol Delta(14)-reductase (C14SR) encoded by TM7SF2 gene, the lamin B receptor (LBR) of the inner nuclear membrane possesses 3beta-hydroxysterol Delta(14)-reductase activity, based on its ability to complement C14SR-defective yeast strains. LBR was indicated as the primary 3beta-hydroxysterol Delta(14)-reductase in human cholesterol biosynthesis, since mutations in LBR gene were found in Greenberg skeletal dysplasia, characterized by accumulation of Delta(14)-unsaturated sterols. This study addresses the issue of C14SR and LBR role in cholesterol biosynthesis. Both human C14SR and LBR expressed in COS-1 cells exhibit 3beta-hydroxysterol Delta(14)-reductase activity in vitro. TM7SF2 mRNA and C14SR protein expression in HepG2 cells grown in delipidated serum (LPDS) plus lovastatin (sterol starvation) were 4- and 8-fold higher, respectively, than in LPDS plus 25-hydroxycholesterol (sterol feeding), resulting in 4-fold higher 3beta-hydroxysterol Delta(14)-reductase activity. No variations in LBR mRNA and protein levels were detected in the same conditions. The induction of TM7SF2 gene expression is turned-on by promoter activation in response to low cell sterol levels and is mediated by SREBP-2. The results suggest a primary role of C14SR in human cholesterol biosynthesis, whereas LBR role in the pathway remains unclear.  相似文献   
133.
This study shows that sphingosine 1-phosphate (S1P) exerts an anti-migratory action in C2C12 myoblasts by reducing directional cell motility and fully abrogating the chemotactic response to insulin-like growth factor-1. The anti-migratory response to S1P required ligation to S1P(2), being attenuated in myoblasts where the receptor was down-regulated by specific antisense oligodeoxyribonucleotides or small interfering RNA (siRNA) and conversely potentiated in S1P(2)-overexpressing myoblasts. The investigation of RhoA and Rac GTPases, critically implicated in cell motility regulation, demonstrated that RhoA was rapidly activated by S1P, while Rac1 was unaffected within the first 5 min but stimulated thereafter. RhoA, but not Rac activation, was identified as a S1P(2)-dependent pathway in experiments in which receptor expression was attenuated by siRNA treatment or up-regulated by S1P(2)-encoding plasmid transfection. Finally, by expression of the dominant negative mutant of RhoA, the GTPase was found implicated in the anti-migratory action of S1P, whereas modulation of Rac1 functionality unaffected the anti-chemotactic effect of S1P, ruling out a role for this protein in the biological response. Since S1P was previously shown to inhibit myoblast proliferation and stimulate myogenesis, the here identified novel biological activity is in favour of a complex physiological role of the sphingolipid in the process of muscle repair.  相似文献   
134.
Cytokines and osteolysis around total hip prostheses   总被引:6,自引:0,他引:6  
The aim of this work is to assess the correlation between the osteolysis around the prosthesis and the presence of cytokines favouring inflammation in the tissues at the interface between loosened prosthesis and bone. In this study, twenty-nine patients that underwent revision surgery were examined. Bioptic samples were collected at the interface between bone and implant both at the stem and socket level. Semiquantitative immunohistochemistry was performed to detect interleukin 1 alpha, interleukin 1 beta, interleukin 6 and tumour necrosis factor, cytokines that directly cause bone resorption and indirectly induce synthesis of other bone resorbing cytokines. Wear particles were identified and quantified by light microscopy. Radiographic evidence for osteolysis was scored by the Engh and Bobyn score. In tissues collected at the interface, the percentage of cells positive to IL1, IL6 and particularly to TNF increased in relation to the tissues collected at the interface with stable components. The cells occurring in the new capsule do not secrete cytokines in quantities that can be related to severity of wear. Cemented prostheses showed higher incidence of severe osteolysis, and higher levels of cytokines. It can be concluded that TNF, and to a lesser extent IL1 and IL6, are positively related to the severity of osteolysis around the prosthesis and therefore a pharmacological treatment can be hypothesized with anti-inflammatory or anti-cytokine drugs in order to limit or to avoid prosthesis loosening.  相似文献   
135.
Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe(2+) oxidation in plasma of mammals. In addition to its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA, and desferal, whereas heparin and bathocuproine have no effect. Catalase or superoxide dismutase additions do not interfere with the CPH-oxidation yield, demonstrating that oxygen-derived free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for reactive oxygen species detection and quantification.  相似文献   
136.
The aim of this study was to investigate the distribution of serotonin (5-HT) receptors of type 6 (5-HT(6)) in postmortem human prefrontal cortex, striatum and hippocampus. The brain samples were obtained from 6 subjects who had died for causes not involving primarily or secondarily the CNS. The 5-HT(6) receptor distribution was explored by the [(125)I]SB-258585 binding to brain membranes followed by the pharmacological characterization, where possible, and by autoradiographic, immunohistochemical and immunofluorescence evaluations. A specific and saturable [(125)I]SB-258585 binding was detected in striatum only, with a pharmacological characterization consistent with that of a 5-HT(6) receptor. The autoradiography showed the presence of a specific [(125)I]SB-258585 binding distributed homogeneously in caudate, putamen and accumbens. The immunohistochemistry, carried out in the striatum only, coupled with the immunofluorescence with glial fibrillary acidic protein (GFAP) and parvalbumin (PV) showed the co-localization of 5-HT(6) receptor with PV, while indicating that this receptor subtype was expressed in neurons and not in astrocytes. Taken together, the present findings showed the presence of a higher density of 5-HT(6) receptors, as labeled by [(125)I]SB-258585, in striatum than in hippocampus and prefrontal cortex, and specifically within the neuronal body. In addition, they would suggest that striatum is one of the major potential CNS targets linked to 5-HT(6) receptor modulation.  相似文献   
137.
138.
Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection. In this work we genetically dissected different components of zeaxanthin-dependent photoprotection. By using time-resolved differential spectroscopy in vivo, we identified a zeaxanthin-dependent optical signal characterized by a red shift in the carotenoid peak of the triplet-minus-singlet spectrum of leaves and pigment-binding proteins. By fractionating thylakoids into their component pigment binding complexes, the signal was found to originate from the monomeric Lhcb4–6 antenna components of Photosystem II and the Lhca1–4 subunits of Photosystem I. By analyzing mutants based on their sensitivity to excess light, the red-shifted triplet-minus-singlet signal was tightly correlated with photoprotection in the chloroplasts, suggesting the signal implies an increased efficiency of zeaxanthin in controlling chlorophyll triplet formation. Fluorescence-detected magnetic resonance analysis showed a decrease in the amplitude of signals assigned to chlorophyll triplets belonging to the monomeric antenna complexes of Photosystem II upon zeaxanthin binding; however, the amplitude of carotenoid triplet signal does not increase correspondingly. Results show that the high light-induced binding of zeaxanthin to specific proteins plays a major role in enhancing photoprotection by modulating the yield of potentially dangerous chlorophyll-excited states in vivo and preventing the production of singlet oxygen.  相似文献   
139.
Recent studies have established specific cellular functions for different bioactive sphingolipids in skeletal muscle cells. Ceramide 1-phosphate (C1P) is an important bioactive sphingolipid that has been involved in cell growth and survival. However its possible role in the regulation of muscle cell homeostasis has not been so far investigated. In this study, we show that C1P stimulates myoblast proliferation, as determined by measuring the incorporation of tritiated thymidine into DNA, and progression of the myoblasts through the cell cycle. C1P induced phosphorylation of glycogen synthase kinase-3β and the product of retinoblastoma gene, and enhanced cyclin D1 protein levels. The mitogenic action of C1P also involved activation of phosphatidylinositol 3-kinase/Akt, ERK1/2 and the mammalian target of rapamycin. These effects of C1P were independent of interaction with a putative G(i)-coupled C1P receptor as pertussis toxin, which maintains G(i) protein in the inactive form, did not affect C1P-stimulated myoblast proliferation. By contrast, C1P was unable to inhibit serum starvation- or staurosporine-induced apoptosis in the myoblasts, and did not affect myogenic differentiation. Collectively, these results add up to the current knowledge on cell types targeted by C1P, which so far has been mainly confined to fibroblasts and macrophages, and extend on the mechanisms by which C1P exerts its mitogenic effects. Moreover, the biological activities of C1P described in this report establish that this phosphosphingolipid may be a relevant cue in the regulation of skeletal muscle regeneration, and that C1P-metabolizing enzymes might be important targets for developing cellular therapies for treatment of skeletal muscle degenerative diseases, or tissue injury.  相似文献   
140.
Human bones, recovered from excavations, are an important biological archive of information. In particular, the analysis of the collagen fraction is useful for paleodietary reconstruction, via light stable isotopes, and for (14)C dating. Generally, collagen extraction procedures do not prevent loss of integrity of proteins. As a consequence, information about the state-of-remains preservation is unavailable. Here we describe a "soft" nondestructive CH(3)COOH-based method to recover collagen from archaeological bones, and also to obtain material for successive isotopic analyses. Our isotopic measurements on the extracts indicate that the CH(3)COOH-based method of extraction may be routinely employed in the context of paleodiet studies. In addition, we propose that biochemical characterization by denaturant electrophoresis and Western blot on CH(3)COOH extracts may be used as a bone collagen quality indicator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号