首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   765篇
  免费   59篇
  2023年   4篇
  2022年   5篇
  2021年   7篇
  2020年   10篇
  2019年   12篇
  2018年   16篇
  2017年   14篇
  2016年   16篇
  2015年   27篇
  2014年   35篇
  2013年   54篇
  2012年   76篇
  2011年   49篇
  2010年   30篇
  2009年   34篇
  2008年   44篇
  2007年   39篇
  2006年   39篇
  2005年   49篇
  2004年   43篇
  2003年   36篇
  2002年   36篇
  2001年   12篇
  2000年   10篇
  1999年   13篇
  1998年   8篇
  1997年   6篇
  1995年   8篇
  1994年   8篇
  1993年   5篇
  1992年   5篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   8篇
  1986年   8篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1977年   2篇
  1972年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有824条查询结果,搜索用时 46 毫秒
51.
Polarized absorption microspectrophotometry has been used to detect catalysis and intermolecular electron transfer in single crystals of two multiprotein complexes: (1) the binary complex between Paracoccus denitrificans methylamine dehydrogenase, which contains tryptophan-tryptophylquinone (TTQ) as a cofactor, and its redox partner, the blue copper protein amicyanin; (2) the ternary complex between the same two proteins and cytochrome c-551i. Continuous wave electron paramagnetic resonance has been used to compare the state of copper in polycrystalline powders of the two systems. While catalysis and intermolecular electron transfer from reduced TTQ to copper are too fast to be accessible to our measurements, heme reduction occurs over a period of several minutes. The observed rate constant is about four orders of magnitude lower than in solution. The analysis of the temperature dependence of this apparent constant provides values for the parameters H(AB), related to electronic coupling between the two centers, and lambda, the reorganizational energy, that are compatible with electron transfer being the rate-determining step. From these parameters and the known distance between copper and heme, it is possible to calculate the parameter beta, which depends on the nature of the intervening medium, obtaining a value typical of electron transfer across a protein matrix. These findings suggest that the ternary complex in solution might achieve a higher efficiency than the rigid crystal structure thanks to an as yet unidentified role of protein dynamics.  相似文献   
52.
In this paper we address the question of how a protein environment can modulate the absorption spectrum of a chromophore during a molecular dynamics simulation. The effect of the protein is modeled as an external field acting on the unperturbed eigenstates of the chromophore. Using a first-principles method recently developed in our group, we calculated the perturbed electronic energies for each frame and the corresponding wavelength absorption during the simulation. We apply this method to a nanosencond timescale molecular dynamics simulation of the light-harvesting peridinin-chlorophyll-protein complex from Amphidinium carterae, where chlorophyll was selected among the chromophores of the complex for the calculation. The combination of this quantum-classical calculation with the analysis of the large amplitude motions of the protein makes it possible to point out the relationship between the conformational flexibility of the environment and the excitation wavelength of the chromophore. Results support the idea of the existence of a correlation between protein conformational flexibility and chlorophyll electronic transitions induced by light.  相似文献   
53.
The role played by the B?tzinger complex (B?tC), the pre-B?tzinger complex (pre-B?tC), and the more rostral extent of the inspiratory portion of the ventral respiratory group (iVRG) in the genesis of the eupneic pattern of breathing was investigated in anesthetized, vagotomized, paralyzed, and artificially ventilated rabbits by means of kainic acid (KA, 4.7 mM) microinjections (20-30 nl). Unilateral KA microinjections into all of the investigated VRG subregions caused increases in respiratory frequency associated with moderate decreases in peak phrenic amplitude in the B?tC and pre-B?tC regions. Bilateral KA microinjections into either the B?tC or pre-B?tC transiently eliminated respiratory rhythmicity and caused the appearance of tonic phrenic activity ("tonic apnea"), whereas injections into the rostral iVRG completely suppressed inspiratory activity. Rhythmic activity resumed as low-amplitude, high-frequency oscillations and displayed a progressive, although incomplete, recovery. Combined bilateral KA microinjections (B?tC and pre-B?tC) caused persistent (>3 h) tonic apnea. Results show that all of the investigated VRG subregions exert a potent control on both the intensity and frequency of inspiratory activity, thus suggesting that these areas play a major role in the genesis of the eupneic pattern of breathing.  相似文献   
54.
Ischemic preconditioning increases the velocity of vasodilatation and reduces the total hyperemic flow (THF) of a subsequent coronary reactive hyperemia (CRH). The increase in the velocity of vasodilatation has been shown to depend on an up-regulation of the endothelial release of nitric oxide, while the reduction of THF is attributed to an adenosine A(1) receptor-mediated mechanism. We investigated whether the changes in CRH induced by preconditioning ischemia (PI) can still be obtained after blockade of mitochondrial ATP-sensitive K(+) channels by sodium 5-hydroxydecanoate (5-HD), and whether the blockade per se affects the pattern of CRH.In anesthetized goats, flow was recorded from the left circumflex coronary artery (LCCA). CRH was obtained with the occlusion of LCCA for 15 s. PI was obtained by 2 cycles of 2.5 min of LCCA occlusion with a 5 min interval of reperfusion between the two occlusions. CRH was studied before and after i.v. administration of 5-HD (20 mg/kg), as well as in the presence of 5-HD after PI. Following 5-HD, the pattern of CRH remained unchanged. After 5-HD and PI, velocity of vasodilatation and total hyperemic flow of CRH showed the same changes as in previous studies after PI alone. It was concluded that the blockade of mitochondrial ATP-sensitive K(+) channels, which is reported to prevent myocardial protection, does not affect CRH and does not prevent PI from increasing the velocity of vasodilatation and reducing THF. These results demonstrate that the changes induced in CRH by preconditioning are independent of the opening of the mitochondrial ATP-sensitive K(+) channels.  相似文献   
55.
IFN-kappa is a recently identified type I IFN that exhibits both structural and functional homology with the other type I IFN subclasses. In this study, we have investigated the effect of IFN-kappa on cells of the innate immune system by comparing cytokine release following treatment of human cells with either IFN-kappa or two recombinant IFN subtypes, IFN-beta and IFN-alpha2a. Although IFN-alpha2a failed to stimulate monocyte cytokine secretion, IFN-kappa, like IFN-beta, induced the release of several cytokines from both monocytes and dendritic cells, without the requirement of a costimulatory signal. IFN-kappa was particularly effective in inhibiting inducible IL-12 release from monocytes. Unlike IFN-beta, IFN-kappa did not induce release of IFN-gamma by PBL. Expression of the IFN-kappa mRNA was observed in resting dendritic cells and monocytes, and it was up-regulated by IFN-gamma stimulation in monocytes, while IFN-beta mRNA was minimally detectable under the same conditions. Monocyte and dendritic cell expression of IFN-kappa was also confirmed in vivo in chronic lesions of psoriasis vulgaris and atopic dermatitis. Finally, biosensor-based binding kinetic analysis revealed that IFN-kappa, like IFN-beta, binds strongly to heparin (K(d): 2.1 nM), suggesting that the cytokine can be retained close to the local site of production. The pattern of cytokines induced by IFN-kappa in monocytes, coupled with the unique induction of IFN-kappa mRNA by IFN-gamma, indicates a potential role for IFN-kappa in the regulation of immune cell functions.  相似文献   
56.
Receptors for the bacterial chemotactic peptide fMLP are implicated in inflammation and host defense against microbial infection. We investigated the expression and function of fMLPR in microglial cells, which share characteristics of mononuclear phagocytes and play an important role in proinflammatory responses in the CNS. The expression of the genes encoding formyl peptide receptor (FPR)1 and FPR2, the high- and low-affinity fMLPR, was detected in a murine microglial cell line N9, but these cells did not respond to chemotactic agonists known for these receptors. N9 cells incubated with bacterial LPS increased the expression of fMLPR genes and developed a species of specific, but low-affinity, binding sites for fMLP, in association with marked calcium mobilization and chemotaxis responses to fMLP in a concentration range that typically activated the low-affinity receptor FPR2. In addition, LPS-treated N9 cells were chemoattracted by two FPR2-specific agonists, the HIV-1 envelope-derived V3 peptide, and the 42 aa form of the amyloid beta peptide which is a pathogenic agent in Alzheimer's disease. Primary murine microglial cells also expressed FPR1 and FPR2 genes, but similar to N9 cells, exhibited FPR2-mediated activation only after LPS treatment. In contrast to its effect on the function of FPR2, LPS reduced N9 cell binding and biological responses to the chemokine stromal cell-derived factor-1alpha. Thus, LPS selectively modulates the function of chemoattractant receptors in microglia and may promote host response in inflammatory diseases in the CNS.  相似文献   
57.
Konjak glucomannan (KGM) is a water-soluble linear copolymer of (1-->4) linked beta-D-mannopyranosyl and beta-D-glucopyranosyl units. It has been selectively C6-oxidized by a 2,2,6,6-tetramethylpiperidin-1-oxy mediated reaction to obtain the corresponding uronan. Oxidized KGM has been treated with three different C-5 epimerases, AlgE4, AlgE6, and AlgE1, to obtain uronans with a various content of alpha-L-gulopyranuronate residues, namely, KGME4, KGME6, and KGME1. By use of 1D selective and 2D NMR techniques, a full assignment of the high field (600 MHz) NMR spectra of the purified native KGM and of the oxidized and epimerized derivatives has been obtained. Since in the anomeric region of the (1)H NMR spectrum of native KGM, diads sensitivity is present, the glucose-glucose, glucose-mannose, mannose-mannose, and mannose-glucose distribution has been obtained. In the (13)C spectrum of oxidized KGM, due to the presence of triad sensitivity on the C-4 resonance of glucuronic and mannuronic units, a better sequential investigation has been possible. As a result the average length of mannuronic blocks, N(M) is obtained. When AlgE4, AlgE6, and AlgE1 enzymes are used for the epimerization of oxidized KGM, the reaction products differ significantly both in the proportion and in the distribution of the mannuronic and guluronic residues. In epimerized KGM derivatives, a careful deconvolution of (1)H spectra allows the measurement of the degree of epimerization. In the case of KGME1 and KGME6, the average blocks length, N(G), of the guluronic blocks introduced in the polysaccharidic chain with the epimerization has also been calculated. Due to the shortness of mannuronic blocks in the oxidized KGM before the epimerization, N(G) in the epimerized compounds is also very low.  相似文献   
58.
59.
Treatment with HIV-1 protease inhibitors (PI) is associated with a reduced incidence or regression of Kaposi sarcoma (KS). Here we show that systemic administration of the PIs indinavir or saquinavir to nude mice blocks the development and induces regression of angioproliferative KS-like lesions promoted by primary human KS cells, basic fibroblast growth factor (bFGF), or bFGF and vascular endothelial growth factor (VEGF) combined. These PIs also block bFGF or VEGF-induced angiogenesis in the chorioallantoic membrane assay with a potency similar to paclitaxel (Taxol). These effects are mediated by the inhibition of endothelial- and KS-cell invasion and of matrix metalloproteinase-2 proteolytic activation by PIs at concentrations present in plasma of treated individuals. As PIs also inhibit the in vivo growth and invasion of an angiogenic tumor-cell line, these data indicate that PIs are potent anti-angiogenic and anti-tumor molecules that might be used in treating non-HIV KS and in other HIV-associated tumors.  相似文献   
60.
Phosphatidylinositol (PtdIns) 4-kinases catalyze the conversion of PtdIns to PtdIns 4-phosphate, the major precursor of phosphoinositides that regulates a vast array of cellular processes. Based on enzymatic differences, two classes of PtdIns 4-kinase have been distinguished termed Types II and III. Type III kinases, which belong to the phosphatidylinositol (PI) 3/4-kinase family, have been extensively characterized. In contrast, little is known about the Type II enzymes (PI4KIIs), which have been cloned and sequenced very recently. PI4KIIs bear essentially no sequence similarity to other protein or lipid kinases; hence, they represent a novel and distinct branch of the kinase superfamily. Here we define the minimal catalytic domain of a rat PI4KII isoform, PI4KIIalpha, and identify conserved amino acid residues required for catalysis. We further show that the catalytic domain by itself determines targeting of the kinase to membrane rafts. To verify that the PI4KII family extends beyond mammalian sources, we expressed and characterized Drosophila PI4KII and its catalytic domain. Depletion of PI4KII from Drosophila cells resulted in a severe reduction of PtdIns 4-kinase activity, suggesting the in vivo importance of this enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号