首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14372篇
  免费   1446篇
  国内免费   8篇
  2021年   133篇
  2019年   109篇
  2018年   141篇
  2017年   127篇
  2016年   248篇
  2015年   377篇
  2014年   390篇
  2013年   553篇
  2012年   697篇
  2011年   715篇
  2010年   483篇
  2009年   425篇
  2008年   650篇
  2007年   703篇
  2006年   665篇
  2005年   672篇
  2004年   709篇
  2003年   622篇
  2002年   652篇
  2001年   234篇
  2000年   199篇
  1999年   257篇
  1998年   212篇
  1997年   155篇
  1996年   168篇
  1995年   147篇
  1994年   187篇
  1993年   158篇
  1992年   166篇
  1991年   176篇
  1990年   174篇
  1989年   164篇
  1988年   147篇
  1987年   157篇
  1986年   164篇
  1985年   176篇
  1984年   168篇
  1983年   151篇
  1982年   204篇
  1981年   221篇
  1980年   212篇
  1979年   151篇
  1978年   176篇
  1977年   156篇
  1976年   146篇
  1975年   113篇
  1974年   152篇
  1973年   149篇
  1970年   102篇
  1969年   104篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
White matter injury is the most frequently observed brain lesion in preterm infants. The etiology remains unclear, however, both cerebral hypoperfusion and intrauterine infections have been suggested as risk factors. We compared the neuropathological outcome, including the effect on oligodendrocytes, astrocytes, and microglia, following either systemic asphyxia or endotoxemia in fetal sheep at midgestation. Fetal sheep were subjected to either 25 minutes of umbilical cord occlusion or systemic endotoxemia by administration of Escherichia coli lipopolysaccharide (LPS O111:B4, 100 ng/kg, IV). Periventricular white matter lesions were observed in 2 of 6 asphyxiated fetuses, whereas the remaining animals showed diffuse injury throughout the subcortical white matter and neuronal necrosis in subcortical regions, including the striatum and hippocampus. LPS-treatment resulted in focal inflammatory infiltrates and cystic lesions in periventricular white matter in 2 of 5 animals, but with no neuron specific injury. Both experimental paradigms resulted in microglia activation in the white matter, damaged astrocytes, and loss of oligodendrocytes. These results show that the white matter at midgestation is sensitive to injury following both systemic asphyxia and endotoxemia. Asphyxia induced lesions in both white and subcortical grey matter in association with microglia activation, and endotoxemia resulted in selective white matter damage and inflammation.  相似文献   
962.
963.
964.
Neozygites fresenii-infected Aphis gossypii cadavers, containing dormant hyphal bodies of N. fresenii, were stored in 4 ml glass vials at -14 degrees C in a standard consumer-type refrigerator/freezer for 1, 21, 30, 43, 51, and 68 months to determine the effect of storage on fungal survival. When the cadavers were removed from the freezer and placed in 25+/-1 degrees C, 100% relative humidity, and 12:12 (L:D) conditions, N. fresenii survival, as shown by fungal sporulation from the cadavers, was high at all storage periods. The average percentage of cadavers from which the fungus sporulated were 93, 47, 100, 100, 80, and 60% from 1, 21, 30, 43, 51, and 68 months storage periods, respectively. The number of primary conidia discharged from each sporulating cadaver was estimated using a scale of 1 (low, ca. 1000 primary conidia), 2 (medium, ca. 2000 primary conidia) and 3 (high, ca. 3000 primary conidia). The median scores for the number of primary conidia produced per sporulating cadaver were 3, 2, 3, 3, 2.5, and 1 for 1, 21, 30, 43, 51, and 68 months, respectively. Therefore, except for the longest storage period, most cadavers produced medium to high numbers of primary conidia. Mean germination of primary conidia produced from N. fresenii-infected-aphid cadavers from each time period varied significantly from 66.3 to 86.1% in the 21 and 43 months categories, respectively. Infectivity of capilliconidia, produced from frozen N. fresenii, to live healthy cotton aphids varied significantly from 16.7 to 68.7% from cadavers stored 68 months and 1 month, respectively. Overall N. fresenii survived well in dried frozen cotton aphid cadavers for up to 6 years with little reduction in sporulation, numbers of spores produced, germination of primary conidia, or infectivity.  相似文献   
965.
Bacteriophage lambda integrase (lambda-Int) is the prototypical member of a large family of enzymes that catalyze site-specific DNA recombination via the formation of a Holliday junction intermediate. DNA strand cleavage by lambda-Int is mediated by nucleophilic attack on the scissile phosphate by a conserved tyrosine residue, forming an intermediate with the enzyme covalently attached to the 3'-end of the cleaved strand via a phosphotyrosine linkage. The crystal structure of the catalytic domain of lambda-Int (C170) obtained in the absence of DNA revealed the tyrosine nucleophile at the protein's C terminus to be located on a beta-hairpin far from the other conserved catalytic residues and adjacent to a disordered loop. This observation suggested that a conformational change in the C terminus of the protein was required to generate the active site in cis, or alternatively, that the active site could be completed in trans by donation of the tyrosine nucleophile from a neighboring molecule in the recombining synapse. We used NMR spectroscopy together with limited proteolysis to examine the dynamics of the lambda-Int catalytic domain in the presence and absence of DNA half-site substrates with the goal of characterizing the expected conformational change. Although the C terminus is indeed flexible in the absence of DNA, we find that conformational changes in the tyrosine-containing beta-hairpin are not coupled to DNA binding. To gain structural insights into C170/DNA complexes, we took advantage of mechanistic conservation with Cre and Flp recombinases to model C170 in half-site and tetrameric Holliday junction complexes. Although the models do not reveal the nature of the conformational change required for cis cleavage, they are consistent with much of the available experimental data and provide new insights into the how trans complementation could be accommodated.  相似文献   
966.
The seven-residue peptide GNNQQNY from the N-terminal region of the yeast prion protein Sup35, which forms amyloid fibers, colloidal aggregates and highly ordered nanocrystals, provides a model system for characterizing the elusively protean cross-beta conformation. Depending on preparative conditions, orthorhombic and monoclinic crystals with similar lath-shaped morphology have been obtained. Ultra high-resolution (<0.5A spacing) electron diffraction patterns from single nanocrystals show that the peptide chains pack in parallel cross-beta columns with approximately 4.86A axial spacing. Mosaic striations 20-50 nm wide observed by electron microscopy indicate lateral size-limiting crystal growth related to amyloid fiber formation. Frequently obtained orthorhombic forms, with apparent space group symmetry P2(1)2(1)2(1), have cell dimensions ranging from /a/=22.7-21.2A, /b/=39.9-39.3A, /c/=4.89-4.86A for wet to dried states. Electron diffraction data from single nanocrystals, recorded in tilt series of still frames, have been mapped in reciprocal space. However, reliable integrated intensities cannot be obtained from these series, and dynamical electron diffraction effects present problems in data analysis. The diversity of ordered structures formed under similar conditions has made it difficult to obtain reproducible X-ray diffraction data from powder specimens; and overlapping Bragg reflections in the powder patterns preclude separated structure factor measurements for these data. Model protofilaments, consisting of tightly paired, half-staggered beta strands related by a screw axis, can be fit in the crystal lattices, but model refinement will require accurate structure factor measurements. Nearly anhydrous packing of this hydrophilic peptide can account for the insolubility of the crystals, since the activation energy for rehydration may be extremely high. Water-excluding packing of paired cross-beta peptide segments in thin protofilaments may be characteristic of the wide variety of anomalously stable amyloid aggregates.  相似文献   
967.
By using a combined quantum-mechanical and molecular-mechanical potential in molecular dynamics simulations, we have investigated the effects of the enzyme electric field of dihydrofolate reductase on the electronic polarization of its 5-protonated dihydrofolate substrate at various stages of the catalyzed hydride transfer reaction. Energy decomposition of the total electrostatic interaction energy between the ligands and the enzyme shows that the polarization effect is 4% of the total electrostatic interaction energy, and, significantly, it accounts for 9kcal/mol of transition state stabilization relative to the reactant state. Therefore it is essential to take account of substrate polarization for quantitative interpretation of enzymatic function and for calculation of binding free energies of inhibitors to a protein. Atomic polarizations are calculated as the differences in the average atomic charges on the atoms in gas phase and in molecular simulations of the enzyme; this analysis shows that the glutamate tail and the pterin ring are the highly polarized regions of the substrate. Electron density difference plots of the reactant and product complexes at instantaneous configurations in the enzyme active center confirm the inferences made on the basis of partial atomic charges.  相似文献   
968.
Bacteriorhodopsin is the smallest autonomous light-driven proton pump. Proposals as to how it achieves the directionality of its trans-membrane proton transport fall into two categories: accessibility-switch models in which proton transfer pathways in different parts of the molecule are opened and closed during the photocycle, and affinity-switch models, which focus on changes in proton affinity of groups along the transport chain during the photocycle. Using newly available structural data, and adapting current methods of protein protonation-state prediction to the non-equilibrium case, we have calculated the relative free energies of protonation microstates of groups on the transport chain during key conformational states of the photocycle. Proton flow is modeled using accessibility limitations that do not change during the photocycle. The results show that changes in affinity (microstate energy) calculable from the structural models are sufficient to drive unidirectional proton transport without invoking an accessibility switch. Modeling studies for the N state relative to late M suggest that small structural re-arrangements in the cytoplasmic side may be enough to produce the crucial affinity change of Asp96 during N that allows it to participate in the reprotonation of the Schiff base from the cytoplasmic side. Methodologically, the work represents a conceptual advance compared to the usual calculations of pK(a) using macroscopic electrostatic models. We operate with collective states of protonation involving all key groups, rather than the individual-group pK(a) values traditionally used. When combined with state-to-state transition rules based on accessibility considerations, a model for non-equilibrium proton flow is obtained. Such methods should also be applicable to other active proton-transport systems.  相似文献   
969.
In these studies, we examined the effects of OX40 ligand (OX40L) deficiency on the development of Th2 cells during the Th2 immune response to the intestinal nematode parasite Heligmosomoides polygyrus. Elevations in IL-4 production and total and Ag-specific serum IgE levels were partially inhibited during both the primary and memory immune responses to H. polygyrus in OX40L(-/-) mice. The host-protective memory response was compromised in OX40L(-/-) mice, as decreased worm expulsion and increased egg production were observed compared with H. polygyrus-inoculated OX40L(+/+) mice. To further examine the nature of the IL-4 defect during priming, adoptively transferred DO11.10 T cells were analyzed in the context of the H. polygyrus response. Although Ag-specific T cell IL-4 production was reduced in the OX40L(-/-) mice following immunization with OVA peptide plus H. polygyrus, Ag-specific T cell expansion, cell cycle progression, CXCR5 expression, and migration were comparable between OX40L(+/+) and OX40L(-/-) mice inoculated with OVA and H. polygyrus. These studies suggest an important role for OX40/OX40L interactions in specifically promoting IL-4 production, as well as associated IgE elevations, in Th2 responses to H. polygyrus. However, OX40L interactions were not required for serum IgG1 elevations, increases in germinal center formation, and Ag-specific Th2 cell expansion and migration to the B cell zone.  相似文献   
970.
Negative selection is designed to purge the immune system of high-avidity, self-reactive T cells and thereby protect the host from overt autoimmunity. In this in vivo viral infection model, we show that there is a previously unappreciated dichotomy involved in negative selection in which high-avidity CD8(+) T cells specific for a dominant epitope are eliminated, whereas T cells specific for a subdominant epitope on the same protein preferentially escape deletion. Although this resulted in significant skewing of immunodominance and a substantial depletion of the most promiscuous T cells, thymic and/or peripheral deletion of high-avidity CD8(+) T cells was not accompanied by any major change in the TCR V beta gene family usage or an absolute deletion of a single preferred complementarity-determining region 3 length polymorphism. This suggests that negative selection allows high-avidity CD8(+) T cells specific for subdominant or cryptic epitopes to persist while effectively deleting high-avidity T cells specific for dominant epitopes. By allowing the escape of subdominant T cells, this process still preserves a relatively broad peripheral TCR repertoire that can actively participate in antiviral and/or autoreactive immune responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号