首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5124篇
  免费   428篇
  2023年   7篇
  2022年   32篇
  2021年   79篇
  2020年   36篇
  2019年   48篇
  2018年   80篇
  2017年   62篇
  2016年   118篇
  2015年   187篇
  2014年   208篇
  2013年   279篇
  2012年   367篇
  2011年   357篇
  2010年   284篇
  2009年   259篇
  2008年   334篇
  2007年   387篇
  2006年   321篇
  2005年   321篇
  2004年   310篇
  2003年   284篇
  2002年   270篇
  2001年   53篇
  2000年   32篇
  1999年   76篇
  1998年   84篇
  1997年   56篇
  1996年   58篇
  1995年   54篇
  1994年   62篇
  1993年   47篇
  1992年   56篇
  1991年   36篇
  1990年   32篇
  1989年   17篇
  1988年   30篇
  1987年   23篇
  1986年   18篇
  1985年   24篇
  1984年   21篇
  1983年   22篇
  1982年   21篇
  1981年   21篇
  1980年   15篇
  1979年   16篇
  1978年   10篇
  1977年   11篇
  1976年   8篇
  1974年   6篇
  1973年   7篇
排序方式: 共有5552条查询结果,搜索用时 15 毫秒
141.
Understanding the effect of ground types on foraging movements of ground‐dwelling arthropods is a key step to managing their spatial distribution as required for successful conservation biological control. Indeed, fine movements at the centimeter scale can strongly influence the foraging ability of pest predators. However, because radio frequency identification or harmonic tracking techniques are not yet suitable for small species and video tracking focuses on uniform and light backgrounds, foraging movements have rarely been studied in relation to ground types. We present a method to track a ground‐dwelling arthropod (the earwig Euborellia caraibea) at night, walking on two contrasted ground types: bare soil and soil partly covered with a stratum of banana plant residues allowing individuals to hide periodically. The tracking of individuals within these ground types was achieved by infrared light, tagging individuals, video treatments, and semi‐automatic cleaning of trajectories. We tested different procedures to obtain segments with identical durations to quantify speeds and sinuosities. These procedures were characterized by the junction time gap between trajectory fragments, the rediscretization time of trajectories, and whether or not to use interpolation to fill in missing points in the trajectories. Earwigs exhibited significantly slower and more sinuous movements on soil with banana plant residues than on bare soil. Long time gaps for trajectory junction, extended rediscretization times, and interpolation were complementary means to integrate concealed movements in the trajectories. The highest slowdown in plant residues was detected when the procedure could account for longer periods under the residues. These results suggest that earwigs spent a significant amount of time concealed by the residues. Additionally, the residues strongly decreased the earwigs'' movement. Since the technical solutions presented in this study are inexpensive, easy to set up, and replicate, they represent valuable contributions to the emerging field of video monitoring.  相似文献   
142.
The Antarctic marine environment hosts diversified and highly endemic benthos owing to its unique geologic and climatic history. Current warming trends have increased the urgency of understanding Antarctic species history to predict how environmental changes will impact ecosystem functioning. Antarctic benthic lineages have traditionally been examined under three hypotheses: (1) high endemism and local radiation, (2) emergence of deep‐sea taxa through thermohaline circulation, and (3) species migrations across the Polar Front. In this study, we investigated which hypotheses best describe benthic invertebrate origins by examining Antarctic scale worms (Polynoidae). We amassed 691 polynoid sequences from the Southern Ocean and neighboring areas: the Kerguelen and Tierra del Fuego (South America) archipelagos, the Indian Ocean, and waters around New Zealand. We performed phylogenetic reconstructions to identify lineages across geographic regions, aided by mitochondrial markers cytochrome c oxidase subunit I (Cox1) and 16S ribosomal RNA (16S). Additionally, we produced haplotype networks at the species scale to examine genetic diversity, biogeographic separations, and past demography. The Cox1 dataset provided the most illuminating insights into the evolution of polynoids, with a total of 36 lineages identified. Eunoe sp. was present at Tierra del Fuego and Kerguelen, in favor of the latter acting as a migration crossroads. Harmothoe fuligineum, widespread around the Antarctic continent, was also present but isolated at Kerguelen, possibly resulting from historical freeze–thaw cycles. The genus Polyeunoa appears to have diversified prior to colonizing the continent, leading to the co‐occurrence of at least three cryptic species around the Southern and Indian Oceans. Analyses identified that nearly all populations are presently expanding following a bottleneck event, possibly caused by habitat reduction from the last glacial episodes. Findings support multiple origins for contemporary Antarctic polynoids, and some species investigated here provide information on ancestral scenarios of (re)colonization. First, it is apparent that species collected from the Antarctic continent are endemic, as the absence of closely related species in the Kerguelen and Tierra del Fuego datasets for most lineages argues in favor of Hypothesis 1 of local origin. Next, Eunoe sp. and H. fuligineum, however, support the possibility of Kerguelen and other sub‐Antarctic islands acting as a crossroads for larvae of some species, in support of Hypothesis 3. Finally, the genus Polyeunoa, conversely, is found at depths greater than 150 m and may have a deep origin, in line with Hypothesis 2. These “non endemic” groups, nevertheless, have a distribution that is either north or south of the Antarctic Polar Front, indicating that there is still a barrier to dispersal, even in the deep sea.  相似文献   
143.
144.
145.
146.
We previously identified Xenopus Pat1a (P100) as a member of the maternal CPEB RNP complex, whose components resemble those of P-(rocessing) bodies, and which is implicated in translational control in Xenopus oocytes. Database searches have identified Pat1a proteins in other vertebrates, as well as paralogous Pat1b proteins. Here we characterize Pat1 proteins, which have no readily discernable sequence features, in Xenopus oocytes, eggs, and early embryos and in human tissue culture cells. xPat1a and 1b have essentially mutually exclusive expression patterns in oogenesis and embryogenesis. xPat1a is degraded during meiotic maturation, via PEST-like regions, while xPat1b mRNA is translationally activated at GVBD by cytoplasmic polyadenylation. Pat1 proteins bind RNA in vitro, via a central domain, with a preference for G-rich sequences, including the NRAS 5′ UTR G-quadruplex-forming sequence. When tethered to reporter mRNA, both Pat proteins repress translation in oocytes. Indeed, both epitope-tagged proteins interact with the same components of the CPEB RNP complex, including CPEB, Xp54, eIF4E1b, Rap55B, and ePAB. However, examining endogenous protein interactions, we find that in oocytes only xPat1a is a bona fide component of the CPEB RNP, and that xPat1b resides in a separate large complex. In tissue culture cells, hPat1b localizes to P-bodies, while mPat1a-GFP is either found weakly in P-bodies or disperses P-bodies in a dominant-negative fashion. Altogether we conclude that Pat1a and Pat1b proteins have distinct functions, mediated in separate complexes. Pat1a is a translational repressor in oocytes in a CPEB-containing complex, and Pat1b is a component of P-bodies in somatic cells.  相似文献   
147.
148.
During the most recent decade, environmental DNA metabarcoding approaches have been both developed and improved to minimize the biological and technical biases in these protocols. However, challenges remain, notably those relating to primer design. In the current study, we comprehensively assessed the performance of ten COI and two 16S primer pairs for eDNA metabarcoding, including novel and previously published primers. We used a combined approach of in silico, in vivo‐mock community (33 arthropod taxa from 16 orders), and guano‐based analyses to identify primer sets that would maximize arthropod detection and taxonomic identification, successfully identify the predator (bat) species, and minimize the time and financial costs of the experiment. We focused on two insectivorous bat species that live together in mixed colonies: the greater horseshoe bat (Rhinolophus ferrumequinum) and Geoffroy's bat (Myotis emarginatus). We found that primer degeneracy is the main factor that influences arthropod detection in silico and mock community analyses, while amplicon length is critical for the detection of arthropods from degraded DNA samples. Our guano‐based results highlight the importance of detecting and identifying both predator and prey, as guano samples can be contaminated by other insectivorous species. Moreover, we demonstrate that amplifying bat DNA does not reduce the primers' capacity to detect arthropods. We therefore recommend the simultaneous identification of predator and prey. Finally, our results suggest that up to one‐third of prey occurrences may be unreliable and are probably not of primary interest in diet studies, which may decrease the relevance of combining several primer sets instead of using a single efficient one. In conclusion, this study provides a pragmatic framework for eDNA primer selection with respect to scientific and methodological constraints.  相似文献   
149.
Plant and Soil - The hydrolysis of organic P in soils is a relevant aspect contributing to the supply P to plants, which is affected by adsorbent capacity and biological properties of soils. This...  相似文献   
150.

Extraintestinal pathogenic Escherichia coli (ExPEC) cause a wide range of clinical diseases such as bacteremia and urinary tract infections. The increase of multidrug resistant ExPEC strains is becoming a major concern for the treatment of these infections and E. coli has been identified as a critical priority pathogen by the WHO. Therefore, the development of vaccines has become increasingly important, with the surface lipopolysaccharide constituting a promising vaccine target. This study presents genetic and structural analysis of clinical urine isolates from Switzerland belonging to the serotype O25. Approximately 75% of these isolates were shown to correspond to the substructure O25B only recently described in an emerging clone of E. coli sequence type 131. To address the high occurrence of O25B in clinical isolates, an O25B glycoconjugate vaccine was prepared using an E. coli glycosylation system. The O antigen cluster was integrated into the genome of E. coli W3110, thereby generating an E. coli strain able to synthesize the O25B polysaccharide on a carrier lipid. The polysaccharide was enzymatically conjugated to specific asparagine side chains of the carrier protein exotoxin A (EPA) of Pseudomonas aeruginosa by the PglB oligosaccharyltransferase from Campylobacter jejuni. Detailed characterization of the O25B-EPA conjugate by use of physicochemical methods including NMR and GC-MS confirmed the O25B polysaccharide structure in the conjugate, opening up the possibility to develop a multivalent E. coli conjugate vaccine containing O25B-EPA.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号