首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5343篇
  免费   446篇
  5789篇
  2022年   33篇
  2021年   81篇
  2020年   36篇
  2019年   52篇
  2018年   82篇
  2017年   62篇
  2016年   122篇
  2015年   194篇
  2014年   213篇
  2013年   285篇
  2012年   379篇
  2011年   368篇
  2010年   292篇
  2009年   263篇
  2008年   346篇
  2007年   398篇
  2006年   335篇
  2005年   329篇
  2004年   316篇
  2003年   293篇
  2002年   276篇
  2001年   61篇
  2000年   35篇
  1999年   81篇
  1998年   86篇
  1997年   58篇
  1996年   61篇
  1995年   54篇
  1994年   62篇
  1993年   50篇
  1992年   60篇
  1991年   39篇
  1990年   42篇
  1989年   18篇
  1988年   33篇
  1987年   25篇
  1986年   18篇
  1985年   27篇
  1984年   22篇
  1983年   25篇
  1982年   23篇
  1981年   21篇
  1980年   17篇
  1979年   27篇
  1978年   11篇
  1977年   15篇
  1976年   11篇
  1975年   8篇
  1974年   9篇
  1973年   12篇
排序方式: 共有5789条查询结果,搜索用时 15 毫秒
81.
Using both chromosomal in situ hybridization and molecular techniques, we report the genetic localization of the gene coding for the alpha 1 subunit of the skeletal slow Ca2+ current channel/DHP receptor gene (Cchl1a3) on human Chromosome (Chr) 1 (1q31–1q32 region) and on mouse Chr 1 region (F-G). On the basis of single-strand conformation polymorphism (SSCP-PCR) analysis in an interspecific backcross, we have determined that the Cchl1a3=mdg (muscular dysgenesis) locus is very closely linked to the myogenin (Myog) locus.  相似文献   
82.
Amino acid transport is an attractive target for oncologic imaging. Despite a high demand of cancer cells for cationic amino acids, their potential as PET probes remains unexplored. Arginine, in particular, is involved in a number of biosynthetic pathways that significantly influence carcinogenesis and tumor biology. Cationic amino acids are transported by several cationic transport systems including, ATB0,+ (SLC6A14), which is upregulated in certain human cancers including cervical, colorectal and estrogen receptor-positive breast cancer. In this work, we report the synthesis and preliminary biological evaluation of a new cationic analog of the clinically used PET tumor imaging agent O-(2-[18F]fluroethyl)-l-tyrosine ([18F]FET), namely O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine ([18F]FEMAET). Reference compound and precursor were prepared by multi-step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [18F]fluorination in 16–20 % decay-corrected yields with radiochemical purity >99 %. The new tracer showed good stability in vitro and in vivo. Cell uptake assays demonstrated that FEMAET and [18F]FEMAET accumulate in prostate cancer (PC-3) and small cell lung cancer cells (NCI-H69), with an energy-dependent mechanism. Small animal PET imaging with NCI-H69 xenograft-bearing mice revealed good tumor visualization comparable to [18F]FET and low brain uptake, indicating negligible transport across the blood–brain barrier. In conclusion, the non-natural cationic amino acid PET probe [18F]FEMAET accumulates in cancer cells in vitro and in vivo with possible involvement of ATB0,+.  相似文献   
83.

Background

Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms.

Methodology

Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers.

Principal findings

We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species.

Conclusions

The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples.  相似文献   
84.
Summary Annexin VI and actin were detected by immunoblot analysis in the enamel- and dentin-related portions of dental tissues. Annexin VI was found mainly in the particulate fraction whereas actin was detected in both the soluble and particulate fractions. By immunoelectron microscopy, annexin VI antibodies conjugated with colloidal gold were seen to label the mitochondria, the cytosol and the nucleus of secretory ameloblasts and odontoblasts of rat incisor. In the processes of these cell, the plasmalemmal undercoat was labeled. Antiactin antibodies labeled the desmosome-like junctions, the cytosol, and the mitochondria of the cell bodies. Extensive labeling was seen at the periphery of the Tomes' processes and odontoblast processes. These results suggest that annexin VI may play a role in Ca2+-regulation in the cell bodies, especially as a calcium receptor protein in the mitochondria. Moreover, annexin VI and actin seem to be co-distributed in secretory processes. Thus, these proteins might be both involved in exocytotic and endocytotic events.  相似文献   
85.
Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50–200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex “work-in-progress” MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.  相似文献   
86.
The Australian Government has sanctioned development of greenhouse gas emissions (GHG) abatement methodologies to meet international emissions reduction obligations. Savanna burning emissions abatement methodologies have been available since 2012, and there are currently 72 registered projects covering approximately 32 million ha. Abatement to date has exceeded 4 million tonnes of carbon dioxide equivalent (CO2‐e) principally through the application of low intensity early dry season fire management to reduce the amount of biomass combusted in higher intensity late dry season (LDS) fires. Savanna burning projects can only be conducted on areas with eligible fire‐prone vegetation fuel types where implementing the improved fire management regime is considered ecologically appropriate. This study assesses the suitability of including tall Acacia shrublands (‘Pindan’) as a new eligible fuel type. These shrublands make up 12% (~2 million ha) of the Kimberley region, Western Australia, where, on average, 32% is fire affected annually, mostly in the LDS. A standard assessment protocol was applied to describe vegetation fuel type structural and pyrolysis characteristics. We show that Pindan (i) can be identified and mapped as a unique tall Acacia shrubland vegetation fuel type, (ii) characterised by a significantly greater shrubby fuel load biomass, and (iii) the conservation status of which would benefit from imposition of strategic prescribed burning programme. Savanna burning projects in the Pindan fuel type could potentially abate up to 24.43 t.CO2e/km2 per year, generating significant income and employment opportunities for predominantly Indigenous land managers in the region.  相似文献   
87.
Previous results from this laboratory have shown that very low chronic doses of gamma radiation can stimulate proliferation of the Cyanobacterium Synechococcus lividus. This modification of cell proliferation occurred during the first doubling. In this paper, we have compared the metabolism of cells cultivated in a normal environment or under chronic irradiation. Incubation of the cells in a new medium induced a high superoxide dismutase (EC 1.15.1.1, SOD) activity at the 18th hour and a degradation of phycocyanin, thus demonstrating that cells were submitted to a photooxidative stress. This increase in superoxide dismutase activity was followed by concomittant peaks of glutathione reductase (EC 1.6.4.2, GR) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49, G6P-DH) at the 24th hour. Irradiated cultures at a dose of 53.5 mGray/year show an earlier and higher peak of SOD, GR, and G6P-DH. In a second stage, cultures showed an earlier onset of photosynthesis under irradiation, as evidenced by an increase in pigment content and an enhancement of glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13, GAP-DH). These results show that the radiostimulation is related to the activation of enzymes protecting against peroxides that were induced under oxidative circumstances and to the activation of a glucose catabolism via the oxidative pentose phosphate pathway.Abbreviations mGy milli-Gray - SOD superoxide dismutase - G6P-DH glucose-6-phosphate dehydrogenase - GAP-DH glycer-aldehyde-3-phosphate dehydrogenase - GSSG oxidized glutathione  相似文献   
88.
89.
In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein.  相似文献   
90.
    
Fourier transform infrared spectroscopy has been applied to investigate the secondary structural changes of-lactoglobulin in water/ethanol mixtures. The studies were carried out at two differentpHs and at high protein concentrations. The spectra were recorded using an attenuated total reflection cell. The amide I band of-lactoglobulin in water reveals large amounts of intra extended-sheet structure. About 20% ethanol,-lactoglobulin unfolds and-strand formation is observed.-Helices are built up by increasing the ethanol concentration up to 30%. In 50% ethanol,-lactoglobulin gels providing the apparent pH are neutral. The secondary structural changes of-lactoglobulin were observed on the similarity maps obtained by Principal Component Analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号