首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5445篇
  免费   474篇
  5919篇
  2023年   7篇
  2022年   32篇
  2021年   79篇
  2020年   38篇
  2019年   49篇
  2018年   83篇
  2017年   65篇
  2016年   120篇
  2015年   197篇
  2014年   219篇
  2013年   286篇
  2012年   384篇
  2011年   373篇
  2010年   292篇
  2009年   272篇
  2008年   352篇
  2007年   406篇
  2006年   334篇
  2005年   340篇
  2004年   329篇
  2003年   306篇
  2002年   287篇
  2001年   66篇
  2000年   42篇
  1999年   84篇
  1998年   89篇
  1997年   68篇
  1996年   62篇
  1995年   58篇
  1994年   64篇
  1993年   52篇
  1992年   61篇
  1991年   41篇
  1990年   40篇
  1989年   25篇
  1988年   38篇
  1987年   29篇
  1986年   25篇
  1985年   30篇
  1984年   23篇
  1983年   31篇
  1982年   24篇
  1981年   22篇
  1980年   16篇
  1979年   19篇
  1978年   13篇
  1977年   11篇
  1976年   10篇
  1974年   8篇
  1973年   8篇
排序方式: 共有5919条查询结果,搜索用时 0 毫秒
91.
92.
A purification procedure for a protein related to lactoperoxidase devoid of the heme prosthetic group under conditions also yielding enzymatically active lactoperoxidase is described. These two forms were separated from bovine milk according to their respective behaviors on cation exchange. Lactoperoxidase and non-heme lactoperoxidase had the same apparent molecular weight in the denatured (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and native form (velocity sedimentation on sucrose gradient) about 85,000; but unlike lactoperoxidase, non-heme lactoperoxidase was devoid of light absorption properties in the Soret region and of enzyme activity. Lactoperoxidase and non-heme lactoperoxidase contained a similar amount of carbohydrate and gave very similar peptide maps after limited proteolysis by subtilisin or trypsin. The two forms appeared to be immunologically related since they gave a single line in immunodiffusion using anti-lactoperoxidase antibodies and since 125I-labeled non-heme lactoperoxidase and 125I-labeled lactoperoxidase reacted with anti-lactoperoxidase antibodies in radioimmunoassay. Lactoperoxidase and nonheme lactoperoxidase were compared in their ability to interact with diiodotyrosine and tubulin (Rousset, B., and Wolff, J. (1980) J. Biol. Chem. 255, 2514-2523). 125I-labeled diiodotyrosine bound specifically to lactoperoxidase. No detectable binding has been observed with nonheme lactoperoxidase. In contrast, lactoperoxidase and non-heme lactoperoxidase coupled to an insoluble matrix were able to bind rat brain tubulin, indicating that both forms of lactoperoxidase can be used for an affinity chromatography purification procedure of brain tubulin. Non-heme lactoperoxidase was found in milk from several origins, cow, goat, sheep, and human. In bovine milk, lactoperoxidase and non-heme lactoperoxidase were found in comparable amounts.  相似文献   
93.
We previously identified Xenopus Pat1a (P100) as a member of the maternal CPEB RNP complex, whose components resemble those of P-(rocessing) bodies, and which is implicated in translational control in Xenopus oocytes. Database searches have identified Pat1a proteins in other vertebrates, as well as paralogous Pat1b proteins. Here we characterize Pat1 proteins, which have no readily discernable sequence features, in Xenopus oocytes, eggs, and early embryos and in human tissue culture cells. xPat1a and 1b have essentially mutually exclusive expression patterns in oogenesis and embryogenesis. xPat1a is degraded during meiotic maturation, via PEST-like regions, while xPat1b mRNA is translationally activated at GVBD by cytoplasmic polyadenylation. Pat1 proteins bind RNA in vitro, via a central domain, with a preference for G-rich sequences, including the NRAS 5′ UTR G-quadruplex-forming sequence. When tethered to reporter mRNA, both Pat proteins repress translation in oocytes. Indeed, both epitope-tagged proteins interact with the same components of the CPEB RNP complex, including CPEB, Xp54, eIF4E1b, Rap55B, and ePAB. However, examining endogenous protein interactions, we find that in oocytes only xPat1a is a bona fide component of the CPEB RNP, and that xPat1b resides in a separate large complex. In tissue culture cells, hPat1b localizes to P-bodies, while mPat1a-GFP is either found weakly in P-bodies or disperses P-bodies in a dominant-negative fashion. Altogether we conclude that Pat1a and Pat1b proteins have distinct functions, mediated in separate complexes. Pat1a is a translational repressor in oocytes in a CPEB-containing complex, and Pat1b is a component of P-bodies in somatic cells.  相似文献   
94.
95.
Plant and Soil - The hydrolysis of organic P in soils is a relevant aspect contributing to the supply P to plants, which is affected by adsorbent capacity and biological properties of soils. This...  相似文献   
96.
Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50–200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex “work-in-progress” MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.  相似文献   
97.
It has recently been demonstrated that dried cells of Saccharomyces cerevisiae were able to produce alcohols and aldehydes in a solid/gas reactor with in situ cofactor regeneration. Since diffusion of gaseous substrates may be limited by the membrane and cell wall, cell disruption by sonication was used to improve oxidoreduction with ethanol and butyraldehyde as substrates. Results showed that partial cell disruption enhances the maximum conversion yield with the best results obtained after 2 min of sonication. Beyond this time, the ADH activity decreased. Better stability was observed in the pellet obtained after centrifugation indicating the importance of cell environment for enzyme stability. Tests on purified mitochondria showed that the ADH activity in cells was mainly cytoplasmic. The addition of oxidized cofactor did not change either the activity or the stability of the catalyst in a gaseous medium. The effect of water activity was studied on material obtained after 2 min of disruption and a reduction of critical water activity needed for revealing enzymatic activity was observed. With increasing aw, the enzyme was active at aw=0.3 while a water activity of 0.4 was required before disruption. Nevertheless, the best compromise between activity and stability was obtained in both cases for a water activity of 0.57.  相似文献   
98.
The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior–inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.  相似文献   
99.
Tibial bone defect is a critical problem for revision knee arthroplasty. Instead of using metallic spacer or cement, biodegradable scaffolds could be an alternative solution. A numerical model of a revision knee arthroplasty was thus developed to estimate the mechanical resistance of the scaffold in this demanding situation. The tibia, scaffold, and prosthesis were represented by simplified parameterised geometries. The maximal gait cycle force was applied asymmetrically to simulate a critical loading. Several parameters were analysed: 1) inter-individual variability, 2) cortical bone stiffness, 3) cortical bone thickness, 4) prosthesis fixation quality, and 5) scaffold thickness. The calculated scaffold strain was compared to its experimental ultimate strain. Among the tested parameters, failure was only predicted with scaffold thickness below 5 mm. This study suggests that biodegradable bone scaffolds could be used to fill bone defects in revision knee arthroplasty, but scaffold size seems to be the limiting factor.  相似文献   
100.
Brown adipose tissue (BAT) has long been thought to be absent or very scarce in human adults so that its contribution to energy expenditure was not considered as relevant. The recent discovery of thermogenic BAT in human adults opened the field for innovative strategies to combat overweight/obesity and associated diseases. This energy-dissipating function of BAT is responsible for adaptive thermogenesis in response to cold stimulation. In this context, adipocytes can be converted, within white adipose tissue (WAT), into multilocular adipocytes expressing UCP1, a mitochondrial protein that plays a key role in heat production by uncoupling the activity of the respiratory chain from ATP synthesis. These adipocytes have been named “brite” or “beige” adipocytes. Whereas BAT has been studied for a long time in murine models both in vivo and in vitro, there is now a strong demand for human cellular models to validate and/or identify critical factors involved in the induction of a thermogenic program within adipocytes. In this review we will discuss the different human cellular models described in the literature and what is known regarding the regulation of their differentiation and/or activation process. In addition, the role of microRNAs as novel regulators of brown/“brite” adipocyte differentiation and conversion will be depicted. Finally, investigation of both the conversion and the metabolism of white-to-brown converted adipocytes is required for the development of therapeutic strategies targeting overweight/obesity and associated diseases. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号