首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5208篇
  免费   434篇
  2023年   7篇
  2022年   32篇
  2021年   79篇
  2020年   36篇
  2019年   48篇
  2018年   80篇
  2017年   62篇
  2016年   120篇
  2015年   188篇
  2014年   208篇
  2013年   282篇
  2012年   371篇
  2011年   360篇
  2010年   286篇
  2009年   259篇
  2008年   335篇
  2007年   390篇
  2006年   323篇
  2005年   322篇
  2004年   311篇
  2003年   287篇
  2002年   276篇
  2001年   55篇
  2000年   34篇
  1999年   80篇
  1998年   84篇
  1997年   57篇
  1996年   58篇
  1995年   55篇
  1994年   63篇
  1993年   48篇
  1992年   60篇
  1991年   42篇
  1990年   35篇
  1989年   25篇
  1988年   34篇
  1987年   25篇
  1986年   22篇
  1985年   26篇
  1984年   21篇
  1983年   22篇
  1982年   24篇
  1981年   22篇
  1980年   15篇
  1979年   19篇
  1978年   10篇
  1977年   11篇
  1976年   9篇
  1974年   7篇
  1973年   9篇
排序方式: 共有5642条查询结果,搜索用时 15 毫秒
151.
152.
In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein.  相似文献   
153.
Coralline algae are considered among the most sensitive species to near future ocean acidification. We tested the effects of elevated pCO2 on the metabolism of the free‐living coralline alga Lithothamnion corallioides (“maerl”) and the interactions with changes in temperature. Specimens were collected in North Brittany (France) and grown for 3 months at pCO2 of 380 (ambient pCO2), 550, 750, and 1000 μatm (elevated pCO2) and at successive temperatures of 10°C (ambient temperature in winter), 16°C (ambient temperature in summer), and 19°C (ambient temperature in summer +3°C). At each temperature, gross primary production, respiration (oxygen flux), and calcification (alkalinity flux) rates were assessed in the light and dark. Pigments were determined by HPLC. Chl a, carotene, and zeaxanthin were the three major pigments found in L. corallioides thalli. Elevated pCO2 did not affect pigment content while temperature slightly decreased zeaxanthin and carotene content at 10°C. Gross production was not affected by temperature but was significantly affected by pCO2 with an increase between 380 and 550 μatm. Light, dark, and diel (24 h) calcification rates strongly decreased with increasing pCO2 regardless of the temperature. Although elevated pCO2 only slightly affected gross production in L. corallioides, diel net calcification was reduced by up to 80% under the 1,000 μatm treatment. Our findings suggested that near future levels of CO2 will have profound consequences for carbon and carbonate budgets in rhodolith beds and for the sustainability of these habitats.  相似文献   
154.
The differentiation of mesenchymal stromal cells has been shown to be affected by many parameters such as morphogens, flow rate, medium viscosity, and shear stress when exposed to fluid flow. The mechanism by which these cells sense their environment is still under intense discussion. In particular, during flow chamber experiments, it is difficult to interpret the interplay of the above-mentioned parameters in the process of cell differentiation. In this work, we tested the hypothesis that the competition between diffusion and advection of paracrine morphogens could explain the dependency of the cell differentiation to the above-mentioned parameters. To evaluate this hypothesis, we developed a numerical model simulating a simplified version of the advection-diffusion-reaction of morphogens secreted by the cells within a flow chamber. The model predicted a sharp transition in the fraction of receptors bound to the morphogen. This transition was characterized by a new, dimensionless number depending on flow rate, flow viscosity, flow chamber dimensions, and morphogen decay rate. We concluded that the competition between diffusion and advection of paracrine morphogens can act as a probe for the cells to sense their pericellular environment.  相似文献   
155.
Tubular aggregates are regular arrays of membrane tubules accumulating in muscle with age. They are found as secondary features in several muscle disorders, including alcohol- and drug-induced myopathies, exercise-induced cramps, and inherited myasthenia, but also exist as a pure genetic form characterized by slowly progressive muscle weakness. We identified dominant STIM1 mutations as a genetic cause of tubular-aggregate myopathy (TAM). Stromal interaction molecule 1 (STIM1) is the main Ca2+ sensor in the endoplasmic reticulum, and all mutations were found in the highly conserved intraluminal Ca2+-binding EF hands. Ca2+ stores are refilled through a process called store-operated Ca2+ entry (SOCE). Upon Ca2+-store depletion, wild-type STIM1 oligomerizes and thereby triggers extracellular Ca2+ entry. In contrast, the missense mutations found in our four TAM-affected families induced constitutive STIM1 clustering, indicating that Ca2+ sensing was impaired. By monitoring the calcium response of TAM myoblasts to SOCE, we found a significantly higher basal Ca2+ level in TAM cells and a dysregulation of intracellular Ca2+ homeostasis. Because recessive STIM1 loss-of-function mutations were associated with immunodeficiency, we conclude that the tissue-specific impact of STIM1 loss or constitutive activation is different and that a tight regulation of STIM1-dependent SOCE is fundamental for normal skeletal-muscle structure and function.  相似文献   
156.
DYRK1B is a kinase over-expressed in certain cancer cells (including colon, ovarian, pancreatic, etc.). Recent publications have demonstrated inhibition of DYRK1B could be an attractive target for cancer therapy. From a data-mining effort, the team has discovered analogues of pyrido[2,3-d]pyrimidines as potent enantio-selective inhibitors of DYRK1B. Cells treated with a tool compound from this series showed the same cellular effects as down regulation of DYRK1B with siRNA. Such effects are consistent with the proposed mechanism of action. Progress of the SAR study is presented.  相似文献   
157.
Plant proteomics has made tremendous contributions in understanding the complex processes of plant biology. Here, its current status in India and Nepal is discussed. Gel-based proteomics is predominantly utilized on crops and non-crops to analyze majorly abiotic (49 %) and biotic (18 %) stress, development (11 %) and post-translational modifications (7 %). Rice is the most explored system (36 %) with major focus on abiotic mainly dehydration (36 %) stress. In spite of expensive proteomics setup and scarcity of trained workforce, output in form of publications is encouraging. To boost plant proteomics in India and Nepal, researchers have discussed ground level issues among themselves and with the International Plant Proteomics Organization (INPPO) to act in priority on concerns like food security. Active collaboration may help in translating this knowledge to fruitful applications.  相似文献   
158.
The application of small molecules has played a crucial role in identifying novel components involved in plant signalling. Compared to classic genetic approaches, small molecule screens offer notable advantages in dissecting plant biological processes, such as technical simplicity, low start-up costs, and most importantly, bypassing the problems of lethality and redundancy. To identify small molecules that target a biological process or protein of interest, robust and well-reasoned high-throughput screening approaches are essential. In this review, we present a series of principles and valuable approaches in small molecule screening in the plant model system Arabidopsis thaliana. We also provide an overview of small molecules that led to breakthroughs in uncovering phytohormone signalling pathways, endomembrane signalling cascades, novel growth regulators, and plant defence mechanisms. Meanwhile, the strategies to deciphering the mechanisms of these small molecules on Arabidopsis are highlighted. Moreover, the opportunities and challenges of small molecule applications in translational biology are discussed.  相似文献   
159.

Purpose

PP2A is a serine/threonine phosphatase critical to physiological processes, including apoptosis. Cell penetrating peptides are molecules that can translocate into cells without causing membrane damage. Our goal was to develop cell-penetrating fusion peptides specifically designed to disrupt the caspase-9/PP2A interaction and evaluate their therapeutic potential in vitro and in vivo.

Experimental Design

We generated a peptide containing a penetrating sequence associated to the interaction motif between human caspase-9 and PP2A (DPT-C9h), in order to target their association. Using tumour cell lines, primary human cells and primary human breast cancer (BC) xenografts, we investigated the capacity of DPT-C9h to provoke apoptosis in vitro and inhibition of tumour growth (TGI) in vivo. DPT-C9h was intraperitonealy administered at doses from 1 to 25 mg/kg/day for 5 weeks. Relative Tumour Volume (RTV) was calculated.

Results

We demonstrated that DPT-C9h specifically target caspase-9/PP2A interaction in vitro and in vivo and induced caspase-9-dependent apoptosis in cancer cell lines. DPT-C9h also induced significant TGI in BC xenografts models. The mouse-specific peptide DPT-C9 also induced TGI in lung (K-Ras model) and breast cancer (PyMT) models. DPT-C9h has a specific effect on transformed B cells isolated from chronic lymphocytic leukemia patients without any effect on primary healthy cells. Finally, neither toxicity nor immunogenic responses were observed.

Conclusion

Using the cell-penetrating peptides blocking caspase-9/PP2A interactions, we have demonstrated that DPT-C9h had a strong therapeutic effect in vitro and in vivo in mouse models of tumour progression.  相似文献   
160.

Background

International collaboration (IC) is essential for the advance of stem cell research, a field characterized by marked asymmetries in knowledge and capacity between nations. China is emerging as a global leader in the stem cell field. However, knowledge on the extent and characteristics of IC in stem cell science, particularly China’s collaboration with developed economies, is lacking.

Methods and Findings

We provide a scientometric analysis of the China–Canada collaboration in stem cell research, placing this in the context of other leading producers in the field. We analyze stem cell research published from 2006 to 2010 from the Scopus database, using co-authored papers as a proxy for collaboration. We examine IC levels, collaboration preferences, scientific impact, the collaborating institutions in China and Canada, areas of mutual interest, and funding sources. Our analysis shows rapid global expansion of the field with 48% increase in papers from 2006 to 2010. China now ranks second globally after the United States. China has the lowest IC rate of countries examined, while Canada has one of the highest. China–Canada collaboration is rising steadily, more than doubling during 2006–2010. China–Canada collaboration enhances impact compared to papers authored solely by China-based researchers This difference remained significant even when comparing only papers published in English.

Conclusions

While China is increasingly courted in IC by developed countries as a partner in stem cell research, it is clear that it has reached its status in the field largely through domestic publications. Nevertheless, IC enhances the impact of stem cell research in China, and in the field in general. This study establishes an objective baseline for comparison with future studies, setting the stage for in-depth exploration of the dynamics and genesis of IC in stem cell research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号