首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   21篇
  2023年   3篇
  2022年   5篇
  2021年   16篇
  2020年   3篇
  2019年   5篇
  2018年   16篇
  2017年   5篇
  2016年   16篇
  2015年   15篇
  2014年   23篇
  2013年   18篇
  2012年   32篇
  2011年   23篇
  2010年   17篇
  2009年   13篇
  2008年   22篇
  2007年   10篇
  2006年   19篇
  2005年   8篇
  2004年   8篇
  2003年   7篇
  2002年   10篇
  2001年   3篇
  1997年   1篇
  1983年   1篇
排序方式: 共有299条查询结果,搜索用时 15 毫秒
111.
112.
  相似文献   
113.
The biostimulating activity of low level laser radiation of various wavelengths and energy doses is widely documented in the literature, but the mechanisms of the intracellular reactions involved are not precisely known. The aim of this paper is to evaluate the influence of low level laser radiation from an multiwave locked system (MLS) of two wavelengths (wavelength = 808 nm in continuous emission and 905 nm in pulsed emission) on the human erythrocyte membrane and on the secondary structure of human serum albumin (HSA). Human erythrocytes membranes and HSA were irradiated with laser light of low intensity with surface energy density ranging from 0.46 to 4.9 J cm?2 and surface energy power density 195 mW cm?2 (1,000 Hz) and 230 mW cm?2 (2,000 Hz). Structural and functional changes in the erythrocyte membrane were characterized by its fluidity, while changes in the protein were monitored by its secondary structure. Dose-dependent changes in erythrocyte membrane fluidity were induced by near-infrared laser radiation. Slight changes in the secondary structure of HSA were also noted. MLS laser radiation influences the structure and function of the human erythrocyte membrane resulting in a change in fluidity.  相似文献   
114.
The major light harvesting complex in cyanobacteria and red algae is the phycobilisome (PBS), comprised of hundreds of seemingly similar chromophores, which are protein bound and assembled in a fashion that enables highly efficient uni-directional energy transfer to reaction centers. The PBS is comprised of a core containing 2–5 cylinders surrounded by 6–8 rods, and a number of models have been proposed describing the PBS structure. One of the most critical steps in the functionality of the PBS is energy transfer from the rod substructures to the core substructure. In this study we compare the structural and functional characteristics of high-phosphate stabilized PBS (the standard fashion of stabilization of isolated complexes) with cross-linked PBS in low ionic strength buffer from two cyanobacterial species, Thermosynechococcus vulcanus and Acaryochloris marina. We show that chemical cross-linking preserves efficient energy transfer from the phycocyanin containing rods to the allophycocyanin containing cores with fluorescent emission from the terminal emitters. However, this energy transfer is shown to exist in PBS complexes of different structures as characterized by determination of a 2.4 Å structure by X-ray crystallography, single crystal confocal microscopy, mass spectrometry and transmission electron microscopy of negatively stained and cryogenically preserved complexes. We conclude that the PBS has intrinsic structural properties that enable efficient energy transfer from rod substructures to the core substructures without requiring a single unique structure. We discuss the significance of our observations on the functionality of the PBS in vivo.  相似文献   
115.
The Ebola virus (EBOV) genome only encodes a single viral polypeptide with enzymatic activity, the viral large (L) RNA-dependent RNA polymerase protein. However, currently, there is limited information about the L protein, which has hampered the development of antivirals. Therefore, antifiloviral therapeutic efforts must include additional targets such as protein–protein interfaces. Viral protein 35 (VP35) is multifunctional and plays important roles in viral pathogenesis, including viral mRNA synthesis and replication of the negative-sense RNA viral genome. Previous studies revealed that mutation of key basic residues within the VP35 interferon inhibitory domain (IID) results in significant EBOV attenuation, both in vitro and in vivo. In the current study, we use an experimental pipeline that includes structure-based in silico screening and biochemical and structural characterization, along with medicinal chemistry, to identify and characterize small molecules that target a binding pocket within VP35. NMR mapping experiments and high-resolution x-ray crystal structures show that select small molecules bind to a region of VP35 IID that is important for replication complex formation through interactions with the viral nucleoprotein (NP). We also tested select compounds for their ability to inhibit VP35 IID–NP interactions in vitro as well as VP35 function in a minigenome assay and EBOV replication. These results confirm the ability of compounds identified in this study to inhibit VP35–NP interactions in vitro and to impair viral replication in cell-based assays. These studies provide an initial framework to guide development of antifiloviral compounds against filoviral VP35 proteins.  相似文献   
116.
Many experimental studies have demonstrated the favorable biological activities of plants belonging to the genus Rubus, but little is known of the role of Rubus leaf extracts in the modulation of the surface membrane expression and activity of endothelial apyrase. The aim of this study was to assess the influence of 1–15 μg/ml Rubus extracts on CD39 expression and enzymatic activity, and on the activation (ICAM-1 expression) and viability of human umbilical vein endothelial cells (HUVEC). The polyphenolic contents and antioxidative capacities of extracts from dewberry (R. caesius L.) and raspberry (R. idaeus L.) leaves were also investigated. The techniques applied were flow cytometry (endothelial surface membrane expression of ICAM-1 and CD39), malachite green assay (CD39 activity), HPLC-DAD (quantitative analysis of polyphenolic extract), ABTS, DPPH and FRAP spectrometric assays (antioxidant capacity), and the MTT test (cell viability). Significantly increased CD39 expressions and significantly decreased ATPDase activities were found in the cells treated with 15 μg/ml of either extract compared to the results for the controls. Neither of the extracts affected cell proliferation, but both significantly augmented endothelial cell ICAM-1 expression. The overall antioxidant capacities of the examined extracts remained relatively high and corresponded well to the determined total polyphenol contents. Overall, the results indicate that under in vitro conditions dewberry and raspberry leaf extracts have unfavorable impact on endothelial cells.  相似文献   
117.
Human immunodeficiency virus type 1 (HIV-1) efficiently propagates through cell-to-cell contacts, which include virological synapses (VS), filopodia, and nanotubes. Here, we quantified and characterized further these diverse modes of contact in lymphocytes. We report that viral transmission mainly occurs across VS and through “polysynapses,” a rosette-like structure formed between one infected cell and multiple adjacent recipients. Polysynapses are characterized by simultaneous HIV clustering and transfer at multiple membrane regions. HIV Gag proteins often adopt a ring-like supramolecular organization at sites of intercellular contacts and colocalize with CD63 tetraspanin and raft components GM1, Thy-1, and CD59. In donor cells engaged in polysynapses, there is no preferential accumulation of Gag proteins at contact sites facing the microtubule organizing center. The LFA-1 adhesion molecule, known to facilitate viral replication, enhances formation of polysynapses. Altogether, our results reveal an underestimated mode of viral transfer through polysynapses. In HIV-infected individuals, these structures, by promoting concomitant infection of multiple targets in the vicinity of infected cells, may facilitate exponential viral growth and escape from immune responses.Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) mostly replicate in CD4+ memory T cells throughout the lymphoid tissues. A compartmentalization of HIV-1 quasispecies, associated with the presence of multiply infected cells, has been observed in microdissected splenic germinal centers (12), suggesting that viral dissemination occurs by local replication in nearby cells. Viral spread is driven by cell-free virions and, in a much more efficient and rapid way, through direct transfer of infection across cell-to-cell contacts (41, 44). Various modes of cell-to-cell HIV transfer in culture have been reported (1, 11, 13, 22, 33, 46, 49, 50). For instance, HIV-1 readily forms virological synapses (VS) at the interface between HIV-infected cells and targets (44). VS were initially described by Bangham et al., to characterize human T-cell leukemia virus type 1 (HTLV-1) transfer in lymphocytes (20). The HIV-1 or HTLV-1 VS represents a polarized accumulation of viruses at the contact zone between one individual infected cell and one target. Regarding HIV-1, VS formation involves HIV Env-CD4-coreceptor interactions and requires cytoskeletal rearrangements and stabilization of cell junctions by adhesion molecules (3, 22-24). Interestingly, the VS likely allows HIV to evade antibody neutralization (3), although Env-independent mechanisms of viral transfer have been reported (11, 21). Interestingly, HIV dissemination through VS involves viral endocytosis in target cells (18, 43). Another mode of retroviral transfer involves the establishment of filopodial bridges (or viral cytonemes) between infected cells and targets (46). Viruses move along the outer surface of the bridge toward the target cell, in a kind of stretched-out VS (17). More recently, thinner structures called membrane nanotubes, which form when cells make contact and subsequently part, have been reported to mediate HIV spread (7, 50). Both filopodia and nanotubes might allow transfer to distant cells, as observed not only with retroviruses, but also with numerous viral species, like herpesvirus, papillomavirus, and vaccinia virus (5, 28, 34, 45, 47). Limiting cell contacts by gently agitating cells significantly reduces HIV spread in culture (49), but the relative contributions of VS, filopodia, and nanotubes to viral replication remain poorly understood.Here, we investigated HIV spread in CD4+ lymphocytes by combining diverse techniques of visualization (three-dimensional [3D] reconstructions of confocal immunofluorescence [IF], scanning electron microscopy [SEM], correlative IF-transmission electron microscopy [TEM], and real-time imaging of HIV Gag movements). We quantified the frequency of VS, filopodia, and nanotubes in culture. We identified in lymphocytes a poorly characterized structure of viral transmission that we termed “polysynapse,” in which one infected cell simultaneously transfers the virus to multiple adjacent recipients. We further describe some cellular and viral mechanisms involved in the formation of polysynapses.  相似文献   
118.
The blood samples of 17 bison (7 cows, a heifer, a young bull and 8 calves) formed the basis for conducting analyses of blood plasma. The measurements were carried out by using ionoselective electrodes aided by a Hitachi 917 biochemical analyser. An interpretation of the results was possible due to comparison with the results of similar analyses completed in the United States. Many differences in blood chemistry values in bison bred at Kurozweki were found in comparison to bison from the US.  相似文献   
119.
120.
A phage-displayed random 7-mer disulfide bridge-constrained peptide library was used to map the surface of the RhoA GTPase and to find peptides able to recognize RhoA switch regions. Several peptide sequences were selected after four rounds of enrichment, giving a high signal in ELISA against RhoA-GDP. A detailed analysis of one such selected peptide, called R2 (CWSFPGYAC), is reported. The RhoA-R2 interaction was investigated using fluorescence spectroscopy, chemical denaturation, and determination of the kinetics of nucleotide exchange and GTP hydrolysis in the presence of RhoA regulatory proteins. All measurements indicate that the affinity of the R2 peptide for RhoA is in the micromolar range and that R2 behaves as an inhibitor of: i) GDP binding to the apo form of RhoA (Mg2+-and nucleotide-free form of the GTPase), ii) nucleotide exchange stimulated by GEF (DH/PH tandem from PDZRhoGEF), and iii) GTP hydrolysis stimulated by the BH domain of GrafGAP protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号