Autologous fat transplantation is a widely used procedure for surgical reconstruction of tissues. The resorption rate of this transplantation remains high and unpredictable, reinforcing the need of adjuvant treatments that increase the long‐term stability of grafts. Adipose‐derived stem cells (ASC) introduced as single cells in fat has been shown clinically to reduce the resorption of fat grafts. On the other hand, the formulation of ASC into cell spheroids results in the enhancement of their regenerative potential. In this study, we developed a novel method to produce highly homogeneous ASC spheroids and characterized their features and efficacy on fat transplantation. Spheroids conserved ASC markers and multipotency. A regenerative gene expression profile was maintained, and genes linked to autophagy were upregulated whereas proliferation was decreased. Their secreted proteome was enriched in comparison with single‐cell ASC suspension. Addition of spheroids to fat graft in an animal model of transplantation resulted in a better graft long‐term stability when compared to single ASC suspension. In conclusion, we provide a novel method to manufacture homogenous ASC spheroids. These ASC spheroids are superior to ASC in single‐cell suspension to improve the stability of fat transplants, reinforcing their potential in reconstructive surgery. 相似文献
Applied Microbiology and Biotechnology - As Pichia pastoris (syn. Komagataella sp.) yeast can secrete pure recombinant proteins at high rates, it is a desirable production system. The function of a... 相似文献
The current study proposes an automated machine learning approach for the quantification of cells in cell death pathways according to DNA fragmentation.
Methods
A total of 17 images of kidney histological slide samples from male Wistar rats were used. The slides were photographed using an Axio Zeiss Vert.A1 microscope with a 40x objective lens coupled with an Axio Cam MRC Zeiss camera and Zen 2012 software. The images were analyzed using CellProfiler (version 2.1.1) and CellProfiler Analyst open-source software.
Results
Out of the 10,378 objects, 4970 (47,9%) were identified as TUNEL positive, and 5408 (52,1%) were identified as TUNEL negative. On average, the sensitivity and specificity values of the machine learning approach were 0.80 and 0.77, respectively.
Conclusion
Image cytometry provides a quantitative analytical alternative to the more traditional qualitative methods more commonly used in studies. 相似文献
The degradation of cholesterol and related steroids by microbes follows fundamentally different strategies in aerobic and anaerobic environments. In anaerobic bacteria, the primary C26 of the isoprenoid side chain is hydroxylated without oxygen via a three-step cascade: (i) water-dependent hydroxylation at the tertiary C25, (ii) ATP-dependent dehydration to form a subterminal alkene, and (iii) water-dependent hydroxylation at the primary C26 to form an allylic alcohol. However, the enzymes involved in the ATP-dependent dehydration have remained unknown. Here, we isolated an ATP-dependent 25-hydroxy-steroid kinase (25-HSK) from the anaerobic bacterium Sterolibacterium denitrificans. This highly active enzyme preferentially phosphorylated the tertiary C25 of steroid alcohols, including metabolites of cholesterol and sitosterol degradation or 25-OH-vitamin D3. Kinetic data were in agreement with a sequential mechanism via a ternary complex. Remarkably, 25-HSK readily catalyzed the formation of γ-(18O)2-ATP from ADP and the C25-(18O)2-phosphoester. The observed full reversibility of 25-HSK with an equilibrium constant below one can be rationalized by an unusual high phosphoryl transfer potential of tertiary steroid C25-phosphoesters, which is ≈20 kJ mol−1 higher than that of standard sugar phosphoesters and even slightly greater than the β,γ-phosphoanhydride of ATP. In summary, 25-HSK plays an essential role in anaerobic bacterial degradation of zoo- and phytosterols and shows only little similarity to known phosphotransferases. 相似文献
Heme is an erythrocyte-derived toxin that drives disease progression in hemolytic anemias, such as sickle cell disease. During hemolysis, specialized bone marrow-derived macrophages with a high heme-metabolism capacity orchestrate disease adaptation by removing damaged erythrocytes and heme-protein complexes from the blood and supporting iron recycling for erythropoiesis. Since chronic heme-stress is noxious for macrophages, erythrophagocytes in the spleen are continuously replenished from bone marrow-derived progenitors. Here, we hypothesized that adaptation to heme stress progressively shifts differentiation trajectories of bone marrow progenitors to expand the capacity of heme-handling monocyte-derived macrophages at the expense of the homeostatic generation of dendritic cells, which emerge from shared myeloid precursors. This heme-induced redirection of differentiation trajectories may contribute to hemolysis-induced secondary immunodeficiency. We performed single-cell RNA-sequencing with directional RNA velocity analysis of GM-CSF-supplemented mouse bone marrow cultures to assess myeloid differentiation under heme stress. We found that heme-activated NRF2 signaling shifted the differentiation of bone marrow cells towards antioxidant, iron-recycling macrophages, suppressing the generation of dendritic cells in heme-exposed bone marrow cultures. Heme eliminated the capacity of GM-CSF-supplemented bone marrow cultures to activate antigen-specific CD4 T cells. The generation of functionally competent dendritic cells was restored by NRF2 loss. The heme-induced phenotype of macrophage expansion with concurrent dendritic cell depletion was reproduced in hemolytic mice with sickle cell disease and spherocytosis and associated with reduced dendritic cell functions in the spleen. Our data provide a novel mechanistic underpinning of hemolytic stress as a driver of hyposplenism-related secondary immunodeficiency. Subject terms: Haematological diseases, Immunopathogenesis相似文献
Fibroblast growth factors (FGFs) frequently fulfill prominent roles in the regulation of cell migration in various contexts. In Drosophila, the FGF8-like ligands Pyramus (Pyr) and Thisbe (Ths), which signal through their receptor Heartless (Htl), are known to regulate early mesodermal cell migration after gastrulation as well as glial cell migration during eye development. Herein, we show that Pyr and Ths also exert key roles during the long-distance migration of a specific sub-population of mesodermal cells that migrate from the caudal visceral mesoderm within stereotypic bilateral paths along the trunk visceral mesoderm toward the anterior. These cells constitute the founder myoblasts of the longitudinal midgut muscles. In a forward genetic screen for regulators of this morphogenetic process we identified loss of function alleles for pyr. We show that pyr and ths are expressed along the paths of migration in the trunk visceral mesoderm and endoderm and act largely redundantly to help guide the founder myoblasts reliably onto and along their substrate of migration. Ectopically-provided Pyr and Ths signals can efficiently re-rout the migrating cells, both in the presence and absence of endogenous signals. Our data indicate that the guidance functions of these FGFs must act in concert with other important attractive or adhesive activities of the trunk visceral mesoderm. Apart from their guidance functions, the Pyr and Ths signals play an obligatory role for the survival of the migrating cells. Without these signals, essentially all of these cells enter cell death and detach from the migration substrate during early migration. We present experiments that allowed us to dissect the roles of these FGFs as guidance cues versus trophic activities during the migration of the longitudinal visceral muscle founders. 相似文献
BACKGROUND: Sister chromatid separation is initiated by separase, a protease that cleaves cohesin and thereby dissolves sister chromatid cohesion. Separase is activated by the degradation of its inhibitor securin and by the removal of inhibitory phosphates. In human cells, separase activation also coincides with the cleavage of separase, but it is not known if this reaction activates separase, which protease cleaves separase, and how separase cleavage is regulated.RESULTS: Inhibition of separase expression in human cells by RNA interference causes the formation of polyploid cells with large lobed nuclei. In mitosis, many of these cells contain abnormal chromosome plates with unseparated sister chromatids. Inhibitor binding experiments in vitro reveal that securin prevents the access of substrate analogs to the active site of separase. Upon securin degradation, the active site of full-length separase becomes accessible, allowing rapid autocatalytic cleavage of separase at one of three sites. The resulting N- and C-terminal fragments remain associated and can be reinhibited by securin. A noncleavable separase mutant retains its ability to cleave cohesin in vitro.CONCLUSIONS: Our results suggest that separase is required for sister chromatid separation during mitosis in human cells. Our data further indicate that securin inhibits separase by blocking the access of substrates to the active site of separase. Securin proteolysis allows autocatalytic processing of separase into a cleaved form, but separase cleavage is not essential for separase activation. 相似文献
L-Ornithine-L-aspartate (LOLA), a crystalline salt, is used primarily in the management of hepatic encephalopathy. The degree to which it might penetrate the brain, and the effects it might have on metabolism in brain are poorly understood. Here, to investigate the effects of LOLA on brain energy metabolism we incubated brain cortical tissue slices from guinea pig (Cavea porcellus) with the constituent amino acids of LOLA, L-ornithine or L-aspartate, as well as LOLA, in the presence of [1-13C]D-glucose and [1,2-13C]acetate; these labelled substrates are useful indicators of brain metabolic activity. L-Ornithine produced significant “sedative” effects on brain slice metabolism, most likely via conversion of ornithine to GABA via the ornithine aminotransferase pathway, while L-aspartate showed concentration-dependent excitatory effects. The metabolic effects of LOLA reflected a mix of these two different processes and were concentration-dependent. We also investigated the effect of an intraperitoneal bolus injection of L-ornithine, L-aspartate or LOLA on levels of metabolites in kidney, liver and brain cortex and brain stem in mice (C57Bl6J) 1 h later. No significant changes in metabolite levels were seen following the bolus injection of L-aspartate, most likely due to rapid metabolism of aspartate before reaching the target tissue. Brain cortex glutamate was decreased by L-ornithine but no other brain effects were observed with any other compound. Kidney levels of aspartate were increased after injection of L-ornithine and LOLA which may be due to interference by ornithine with the kidney urea cycle. It is likely that without optimising chronic intravenous infusion, LOLA has minimal impact on healthy brain energy metabolism due to systemic clearance and the blood - brain barrier.
The motor protein, prestin, situated in the basolateral plasma membrane of cochlear outer hair cells (OHCs), underlies the generation of somatic, voltage-driven mechanical force, the basis for the exquisite sensitivity, frequency selectivity and dynamic range of mammalian hearing. The molecular and structural basis of the ontogenetic development of this electromechanical force has remained elusive. The present study demonstrates that this force is significantly reduced when the immature subcellular distribution of prestin found along the entire plasma membrane persists into maturity, as has been described in previous studies under hypothyroidism. This observation suggests that cochlear amplification is critically dependent on the surface expression and distribution of prestin. Searching for proteins involved in organizing the subcellular localization of prestin to the basolateral plasma membrane, we identified cochlear expression of a novel truncated prestin splice isoform named prestin 9b (Slc26A5d) that contains a putative PDZ domain-binding motif. Using prestin 9b as the bait in a yeast two-hybrid assay, we identified a calcium/calmodulin-dependent serine protein kinase (CASK) as an interaction partner of prestin. Co-immunoprecipitation assays showed that CASK and prestin 9b can interact with full-length prestin. CASK was co-localized with prestin in a membrane domain where prestin-expressing OHC membrane abuts prestin-free OHC membrane, but was absent from this area for thyroid hormone deficiency. These findings suggest that CASK and the truncated prestin splice isoform contribute to confinement of prestin to the basolateral region of the plasma membrane. By means of such an interaction, the basal junction region between the OHC and its Deiter’s cell may contribute to efficient generation of somatic electromechanical force. 相似文献