首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1423篇
  免费   94篇
  国内免费   1篇
  2024年   3篇
  2023年   15篇
  2022年   28篇
  2021年   43篇
  2020年   36篇
  2019年   34篇
  2018年   30篇
  2017年   35篇
  2016年   51篇
  2015年   90篇
  2014年   94篇
  2013年   124篇
  2012年   134篇
  2011年   124篇
  2010年   89篇
  2009年   55篇
  2008年   58篇
  2007年   76篇
  2006年   54篇
  2005年   61篇
  2004年   40篇
  2003年   37篇
  2002年   31篇
  2001年   15篇
  2000年   11篇
  1999年   16篇
  1998年   14篇
  1997年   8篇
  1996年   8篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1990年   8篇
  1989年   6篇
  1985年   11篇
  1984年   5篇
  1982年   4篇
  1978年   4篇
  1977年   2篇
  1975年   5篇
  1974年   3篇
  1973年   2篇
  1972年   6篇
  1970年   5篇
  1968年   8篇
  1967年   2篇
  1966年   7篇
  1965年   2篇
  1959年   1篇
  1932年   1篇
排序方式: 共有1518条查询结果,搜索用时 468 毫秒
11.
12.
13.
Reviewers for 1988 and 1989  相似文献   
14.
15.
Fructan: fructan fructosyl transferase (FFT, EC 2.4.1.100) was purified from chicory (Cichorium intybus L. var. foliosum cv. Flash) roots by a combination of ammonium sulfate precipitation, concanavalin A affinity chromatography, and anion- and cation-exchange chromatography. This protocol produced a 60-fold purification and a specific activity of 14.5 mol·(mg protein) –1·min–1. The mass of the enzyme was 69 kDa as estimated by gel filtration. On sodium dodecyl sulfatepolyacrylamide gel electrophoresis and mass spectrometry, 52-kDa and 17-kDa fragments were found, suggesting that the enzyme was a heterodimer. Optimal activity was found between pH 5.5 and 6.5. The enzyme used 1-kestose, 1,1-nystose, oligofructan and commercial chicory root inulin (degree of polymerization 10) as donors and acceptors. Sucrose was the best acceptor but could not be used as a donor. However, at higher concentrations sucrose acted as a competitive inhibitor for donors of FFT. 1-Kestose was the most efficient and 1,1-nystose the least efficient donor. The purified enzyme exhibited -fructosidase activity, specially at higher temperatures and lower substrate concentrations. The synthesis of fructans from 1-kestose decreased at higher temperatures (5–50°C). Therefore enzyme assays were performed at 0°C. The same fructan oligosaccharides, with a distribution similar to that observed in vivo, were obtained upon incubation of the enzyme with sucrose and commercial chicory root inulin.Abbreviations Con A concanavalin A - DP degree of polymerization - FFT fructan: fructan fructosyl transferase - Fru fructose - Glc glucose - Kes 1-kestose - MALDI-TOF MS matrix-assisted laser desorption ionisation time of flight mass spectrometry - Nys 1,1-nystose - pI isoelectric point - SST sucrose: sucrose fructosyl transferase - Suc sucrose The authors would like to thank E. Nackaerts for valuable assistance. W. Van den Ende is also grateful to the National Fund for Scientific Research (NFSR Belgium) for giving a grant for research assistants. P. Verhaert is a research associate of the NFSR. This work was also supported by grant OT/91/18 from the Research Fund K.U. Leuven.  相似文献   
16.
Foliar chlorosis of soybean (Glycine max [L.] Merr.) resulting from nodulation by rhizobitoxine-producing (RT+) strains of Bradyrhizobium japonicum is commonly less severe in the field than under greenhouse conditions. Differences in nutritional conditions between the field and greenhouse may contribute to this phenomenon. In particular, field-grown plants obtain some N from soil sources, whereas in the greenhouse soybean is often grown in low-N rooting media to emphasize symbiotic responses. Therefore, we examined the effect of NO3 - on the expression of RT-induced symptoms. Soybean plants inoculated with RT+ bradyrhizobia were grown for 42 days in horticultural vermiculite receiving nutrient solution amended with 0.0, 2.5, or 7.5 mM KNO3. Foliar chlorosis decreased with increasing NO3 - application whereas nodule mass per plant was generally increased by NO3 - application. Total amounts of nodular RT remained constant or increased with NO3 - application, but nodular concentrations of RT decreased. Chlorosis severity was negatively correlated with shoot dry weight, chlorophyll concentration, and total shoot N content. It was concluded that application of NO3 - can reduce the negative effects of RT production on the host plant. This suggests that any NO3 - present in field soils may serve to limit chlorosis development in soybeans.Abbreviations RT rhizobitoxine - RT+ rhizobitoxine-producing - Lb leghemoglobin Published as Miscellaneous Paper No. 1429 of the Delaware Agricultural Experiment Station.  相似文献   
17.
2,4-Dichlorophenoxyacetate (2,4-D) in Alcaligenes eutrophus JMP134 (pJP4) is degraded via 2-chloromaleylacetate as an intermediate. The latter compound was found to be reduced by NADH in a maleylacetate reductase catalyzed reaction. Maleylacetate and chloride were formed as products of 2-chloromaleylacetate reduction, the former being funnelled into the 3-oxoadipate pathway by a second reductive step. There was no indication for an involvement of a pJP4-encoded enzyme in either the reduction or the dechlorination reaction.Abbreviations 2,4-D 2,4-dichlorophenoxyacetate  相似文献   
18.
Two adult sisters affected by cystic fibrosis were both shown to carry two different alterations within exon 11 of the CFTR gene, the nonsense mutation G542X and the missense mutation G551D. Both patients exhibit a relatively benign clinical course. In the described patients, G542X functions as a mild allele and is, in this respect, dominant to the severe G551D.  相似文献   
19.
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β-diversity of different trophic levels, as well as the β-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and β-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.  相似文献   
20.
Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3/year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号