首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1441篇
  免费   96篇
  国内免费   4篇
  2023年   15篇
  2022年   13篇
  2021年   38篇
  2020年   26篇
  2019年   26篇
  2018年   31篇
  2017年   24篇
  2016年   49篇
  2015年   69篇
  2014年   86篇
  2013年   88篇
  2012年   134篇
  2011年   116篇
  2010年   73篇
  2009年   72篇
  2008年   92篇
  2007年   88篇
  2006年   78篇
  2005年   65篇
  2004年   59篇
  2003年   63篇
  2002年   56篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   14篇
  1996年   7篇
  1995年   4篇
  1993年   7篇
  1992年   7篇
  1991年   9篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   7篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   5篇
  1974年   6篇
  1973年   5篇
  1972年   3篇
  1971年   5篇
排序方式: 共有1541条查询结果,搜索用时 31 毫秒
41.
Central to Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas systems are repeated RNA sequences that serve as Cas-protein–binding templates. Classification is based on the architectural composition of associated Cas proteins, considering repeat evolution is essential to complete the picture. We compiled the largest data set of CRISPRs to date, performed comprehensive, independent clustering analyses and identified a novel set of 40 conserved sequence families and 33 potential structure motifs for Cas-endoribonucleases with some distinct conservation patterns. Evolutionary relationships are presented as a hierarchical map of sequence and structure similarities for both a quick and detailed insight into the diversity of CRISPR-Cas systems. In a comparison with Cas-subtypes, I-C, I-E, I-F and type II were strongly coupled and the remaining type I and type III subtypes were loosely coupled to repeat and Cas1 evolution, respectively. Subtypes with a strong link to CRISPR evolution were almost exclusive to bacteria; nevertheless, we identified rare examples of potential horizontal transfer of I-C and I-E systems into archaeal organisms. Our easy-to-use web server provides an automated assignment of newly sequenced CRISPRs to our classification system and enables more informed choices on future hypotheses in CRISPR-Cas research: http://rna.informatik.uni-freiburg.de/CRISPRmap.  相似文献   
42.
43.
Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain. This generates a truncated Src fragment of ∼52 kDa, which we localized predominantly to the cytosol. A cell membrane-permeable fusion peptide derived from the unique domain of Src prevents calpain from cleaving Src in neurons and protects against excitotoxic neuronal death. To explore the role of the truncated Src fragment in neuronal death, we expressed a recombinant truncated Src fragment in cultured neurons and examined how it affects neuronal survival. Expression of this fragment, which lacks the myristoylation motif and unique domain, was sufficient to induce neuronal death. Furthermore, inactivation of the prosurvival kinase Akt is a key step in its neurotoxic signaling pathway. Because Src maintains neuronal survival, our results implicate calpain cleavage as a molecular switch converting Src from a promoter of cell survival to a mediator of neuronal death in excitotoxicity. Besides unveiling a new pathological action of Src, our discovery of the neurotoxic action of the truncated Src fragment suggests new therapeutic strategies with the potential to minimize brain damage in ischemic stroke.  相似文献   
44.
Influenza virus defective interfering (DI) particles are naturally occurring noninfectious virions typically generated during in vitro serial passages in cell culture of the virus at a high multiplicity of infection. DI particles are recognized for the role they play in inhibiting viral replication and for the impact they have on the production of infectious virions. To date, influenza virus DI particles have been reported primarily as a phenomenon of cell culture and in experimentally infected embryonated chicken eggs. They have also been isolated from a respiratory infection of chickens. Using a sequencing approach, we characterize several subgenomic viral RNAs from human nasopharyngeal specimens infected with the influenza A(H1N1)pdm09 virus. The distribution of these in vivo-derived DI-like RNAs was similar to that of in vitro DIs, with the majority of the defective RNAs generated from the PB2 (segment 1) of the polymerase complex, followed by PB1 and PA. The lengths of the in vivo-derived DI-like segments also are similar to those of known in vitro DIs, and the in vivo-derived DI-like segments share internal deletions of the same segments. The presence of identical DI-like RNAs in patients linked by direct contact is compatible with transmission between them. The functional role of DI-like RNAs in natural infections remains to be established.  相似文献   
45.
Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Québec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands.  相似文献   
46.
Natural selection is a significant force that shapes the architecture of the human genome and introduces diversity across global populations. The question of whether advantageous mutations have arisen in the human genome as a result of single or multiple mutation events remains unanswered except for the fact that there exist a handful of genes such as those that confer lactase persistence, affect skin pigmentation, or cause sickle cell anemia. We have developed a long-range-haplotype method for identifying genomic signatures of positive selection to complement existing methods, such as the integrated haplotype score (iHS) or cross-population extended haplotype homozygosity (XP-EHH), for locating signals across the entire allele frequency spectrum. Our method also locates the founder haplotypes that carry the advantageous variants and infers their corresponding population frequencies. This presents an opportunity to systematically interrogate the whole human genome whether a selection signal shared across different populations is the consequence of a single mutation process followed subsequently by gene flow between populations or of convergent evolution due to the occurrence of multiple independent mutation events either at the same variant or within the same gene. The application of our method to data from 14 populations across the world revealed that positive-selection events tend to cluster in populations of the same ancestry. Comparing the founder haplotypes for events that are present across different populations revealed that convergent evolution is a rare occurrence and that the majority of shared signals stem from the same evolutionary event.  相似文献   
47.
Using PD325901 as a starting point for identifying novel allosteric MEK inhibitors with high cell potency and long-lasting target inhibition in vivo, truncation of its hydroxamic ester headgroup was combined with incorporation of alkyl and aryl ethers at the neighboring ring position. Whereas alkoxy side chains did not yield sufficient levels of cell potency, specifically substituted aryloxy groups allowed for high enzymatic and cellular potencies. Sulfamide 28 was identified as a highly potent MEK inhibitor with nanomolar cell potency against B-RAF (V600E) as well as Ras-mutated cell lines, high metabolic stability and resulting long half-lives. It was efficacious against B-RAF as well as K-Ras driven xenograft models and showed—despite being orally bioavailable and not a P-glycoprotein substrate—much lower brain/plasma exposure ratios than PD325901.  相似文献   
48.

Introduction

Abnormal cancer metabolism creates a glycolytic-dependency which can be exploited by lowering glucose availability to the tumor. The ketogenic diet (KD) is a low carbohydrate, high fat diet which decreases blood glucose and elevates blood ketones and has been shown to slow cancer progression in animals and humans. Abnormal tumor vasculature creates hypoxic pockets which promote cancer progression and further increase the glycolytic-dependency of cancers. Hyperbaric oxygen therapy (HBO2T) saturates tumors with oxygen, reversing the cancer promoting effects of tumor hypoxia. Since these non-toxic therapies exploit overlapping metabolic deficiencies of cancer, we tested their combined effects on cancer progression in a natural model of metastatic disease.

Methods

We used the firefly luciferase-tagged VM-M3 mouse model of metastatic cancer to compare tumor progression and survival in mice fed standard or KD ad libitum with or without HBO2T (2.5 ATM absolute, 90 min, 3x/week). Tumor growth was monitored by in vivo bioluminescent imaging.

Results

KD alone significantly decreased blood glucose, slowed tumor growth, and increased mean survival time by 56.7% in mice with systemic metastatic cancer. While HBO2T alone did not influence cancer progression, combining the KD with HBO2T elicited a significant decrease in blood glucose, tumor growth rate, and 77.9% increase in mean survival time compared to controls.

Conclusions

KD and HBO2T produce significant anti-cancer effects when combined in a natural model of systemic metastatic cancer. Our evidence suggests that these therapies should be further investigated as potential non-toxic treatments or adjuvant therapies to standard care for patients with systemic metastatic disease.  相似文献   
49.
Rabies virus P-protein is expressed as five isoforms (P1-P5) which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP)-recognised nuclear localization sequence in the N-terminal region (N-NLS), the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD) can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES). However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2), and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P-protein subcellular localization, consistent with important roles in infection.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号