A new species of Sauvagesia is described and illustrated under the name Sauvagesia paniculata. This new species is morphologically similar to the acicular-leaved species of the subsect. Vellozianae. However, S. paniculata can be clearly differentiated from the other acicular-leaved species by the paniculate inflorescence. Other diagnostic characters of S. paniculata include the shorter pedicel and longer leaves. This new species seems to be narrowly endemic to the “campo rupestre” vegetation in the Esbarrancado mountain range of Mucugê, in the Chapada Diamantina, Bahia, Brazil. 相似文献
Raw cassava root starch was transformed into ethanol in a one-step process of fermentation, in which are combined the conventional processes of liquefaction, saccharification, and fermentation to alcohol. Aspergillus awamori NRRL 3112 and Aspergillus niger were cultivated on wheat bran and used as Koji enzymes. Commercial A. niger amyloglucosidase was also used in this experiment. A raw cassava root homogenate–enzymes–yeast mixture fermented optimally at pH 3.5 and 30°C, for five days and produced ethanol. Alcohol yields from raw cassava roots were between 82.3 and 99.6%. Fungal Koji enzymes effectively decreased the viscosity of cassava root fermentation mashes during incubation. Commercial A. niger amyloglucosidase decreased the viscosity slightly. Reduction of viscosity of fermentation mashes was 40, 84, and 93% by commercial amyloglucosidase, A. awamori, and A. niger enzymes, respectively. The reduction of viscosity of fermentation mashes is probably due to the hydrolysis of pentosans by Koji enzymes. 相似文献
Specific strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA) in bacterial physiology and probiotic-host interactions remain obscure. L. plantarum WCFS1 harbors the genetic potential to switch WTA backbone alditol, providing an opportunity to study the impact of WTA backbone modifications in an isogenic background.
Results
Through genome mining and mutagenesis we constructed derivatives that synthesize alternative WTA variants. The mutants were shown to completely lack WTA, or produce WTA and LTA that lack D-Ala substitution, or ribitol-backbone WTA instead of the wild-type glycerol-containing backbone. DNA micro-array experiments established that the tarIJKL gene cluster is required for the biosynthesis of this alternative WTA backbone, and suggest ribose and arabinose are precursors thereof. Increased tarIJKL expression was not observed in any of our previously performed DNA microarray experiments, nor in qRT-PCR analyses of L. plantarum grown on various carbon sources, leaving the natural conditions leading to WTA backbone alditol switching, if any, to be identified. Human embryonic kidney NF-κB reporter cells expressing Toll like receptor (TLR)-2/6 were exposed to purified WTAs and/or the TA mutants, indicating that WTA is not directly involved in TLR-2/6 signaling, but attenuates this signaling in a backbone independent manner, likely by affecting the release and exposure of immunomodulatory compounds such as LTA. Moreover, human dendritic cells did not secrete any cytokines when purified WTAs were applied, whereas they secreted drastically decreased levels of the pro-inflammatory cytokines IL-12p70 and TNF-α after stimulation with the WTA mutants as compared to the wild-type.
Conclusions
The study presented here correlates structural differences in WTA to their functional characteristics, thereby providing important information aiding to improve our understanding of molecular host-microbe interactions and probiotic functionality.
Microfilaments were isolated from cultured mammalian cells, utilizing procedures similar to those for isolation of "native" thin filaments from muscle. Isolated microfilaments from rat embryo, baby hamster kidney (BHK- 21), and Swiss mouse 3T3 cells appeared structurally similar to muscle thin filaments, exhibiting long, 6 nm Diam profiles with a beaded, helical substructure. An arrowhead pattern was observed after reaction of isolated microfilaments with rabbit skeletal muscle myosin subfragment 1. Under appropriate conditions, isolated microfilaments will aggregate into a form that resembles microfilament bundles seen in situ cultured cells. Isolated microfilaments represent a complex of proteins including actin. Some of these components have been tentatively identified, based on coelectrophoresis with purified proteins, as myosin, tropomyosin, and a high molecular weight actin-binding protein. The tropomyosin components of isolated microfilaments were unexpected; polypeptides comigrated on SDS-polyacrylamide gels with both muscle and nonmuscle types of tropomyosin. In order to identify more specifically these subunits, we isolated and partially characterized tropomyosin from three cell types. BHK-21 cell tropomyosin was similar to other nonmuscle tropomyosins, as judged by several criteria. However, tropomyosin isolated from rate embryo and 3T3 cells contained subunits that comigrated with both skeletal muscle and nonmuscle types of myosin, whereas the BHK cell protein consistently contained a minor muscle-like subunit. The array of tropomyosin subunits present in a cell culture was reflected in the polypeptide chain pattern seen on SDS-polyacrylamide gels of microfilaments isolated from that culture. These studies provide a starting point for correlating changes in the ultrastructural organization of microfilaments with alterations in their protein composition. 相似文献
Pulp and paper production is one of the most important Portuguese economic activities. Mostly based on eucalyptus (Eucalyptus globulus), nearly 70% of the pulp produced is exported, mainly to the European Union. The aim of this paper is to compare the environmental impacts of the production of Portuguese printing and writing paper based on eucalyptus with those from the production of paper from industrial hemp (Cannabis sativa). 相似文献
Approximately 150 million central venous catheters (CVC) are used each year in the United States. Catheter-related bloodstream infections (CR-BSI) are one of the most important complications of the central venous catheters (CVCs). Our objective was to compare the in-hospital mortality when the catheter is removed or not removed in patients with CR-BSI.
Methods
We reviewed all episodes of CR-BSI that occurred in our intensive care unit (ICU) from January 2000 to December 2008. The standard method was defined as a patient with a CVC and at least one positive blood culture obtained from a peripheral vein and a positive semi quantitative (>15 CFU) culture of a catheter segment from where the same organism was isolated. The conservative method was defined as a patient with a CVC and at least one positive blood culture obtained from a peripheral vein and one of the following: (1) differential time period of CVC culture versus peripheral culture positivity of more than 2 hours, or (2) simultaneous quantitative blood culture with 5∶1 ratio (CVC versus peripheral).
Results
53 CR-BSI (37 diagnosed by the standard method and 16 by the conservative method) were diagnosed during the study period. There was a no statistically significant difference in the in-hospital mortality for the standard versus the conservative method (57% vs. 75%, p = 0.208) in ICU patients.
Conclusion
In our study there was a no statistically significant difference between the standard and conservative methods in-hospital mortality. 相似文献
The overall objective of our research is to produce polyanion/chitosan nanoparticulate oral delivery systems for insulin. Specific objectives of the present study were to study dextran sulfate or alginate complexation with chitosan on mean particle size, insulin association efficiency, loading capacity and release profile. Nanoparticles were formed by ionotropic complexation and coacervation between polyanions (dextran sulfate and alginate) and chitosan. Diameter was evaluated with photon correlation spectroscopy, polymer interaction was confirmed by DSC and FTIR and particle morphology was assessed by SEM and TEM. Mean nanoparticle diameter ranged from 423 to 850 nm, insulin association efficiency from 63 to 94% and loading capacity from 5 to 13%. Dextran sulfate provided highest insulin association efficiency and retention of insulin in gastric simulated conditions. These nanoparticle systems show promise as insulin and potentially other therapeutic polypeptides carriers. 相似文献