首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   103篇
  2023年   4篇
  2022年   4篇
  2021年   14篇
  2020年   10篇
  2019年   10篇
  2018年   20篇
  2017年   10篇
  2016年   29篇
  2015年   36篇
  2014年   41篇
  2013年   51篇
  2012年   46篇
  2011年   58篇
  2010年   27篇
  2009年   27篇
  2008年   32篇
  2007年   31篇
  2006年   21篇
  2005年   29篇
  2004年   22篇
  2003年   25篇
  2002年   31篇
  2001年   19篇
  2000年   21篇
  1999年   16篇
  1998年   14篇
  1997年   10篇
  1996年   11篇
  1995年   14篇
  1994年   10篇
  1993年   8篇
  1992年   16篇
  1991年   7篇
  1990年   11篇
  1989年   10篇
  1988年   15篇
  1987年   8篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1980年   4篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
  1973年   2篇
  1970年   2篇
  1965年   2篇
  1964年   2篇
排序方式: 共有823条查询结果,搜索用时 15 毫秒
91.
The mechanism by which pathogenic mutations in the globular domain of the cellular prion protein (PrPC) increase the likelihood of misfolding and predispose to diseases is not yet known. Differences in the evidences provided by structural and metabolic studies of these mutants suggest that in vivo folding could be playing an essential role in their pathogenesis. To address this role, here we use the single or combined M206S and M213S artificial mutants causing labile folds and express them in cells. We find that these mutants are highly toxic, fold as transmembrane PrP, and lack the intramolecular disulfide bond. When the mutations are placed in a chain with impeded transmembrane PrP formation, toxicity is rescued. These results suggest that oxidative folding impairment, as on aging, can be fundamental for the genesis of intracellular neurotoxic intermediates key in prion neurodegenerations.  相似文献   
92.
Slamf8 (CD353) is a cell surface receptor that is expressed upon activation of macrophages (MΦs) by IFN-γ or bacteria. In this article, we report that a very high NADPH oxidase (Nox2) enzyme activity was found in Slamf8(-/-) MΦs in response to Escherichia coli or Staphylococcus aureus, as well as to PMA. The elevated Nox2 activity in Slamf8(-/-) MΦs was also demonstrated in E. coli or S. aureus phagosomes by using a pH indicator system and was further confirmed by a reduction in the enzyme activity after transfection of the receptor into Slamf8-deficient primary MΦs or RAW 264.7 cells. Upon exposure to bacteria or PMA, protein kinase C activity in Slamf8(-/-) MΦs is increased. This results in an enhanced phosphorylation of p40phox, one key component of the Nox2 enzyme complex, which, in turn, leads to greater Nox2 activity. Taken together, the data show that, in response to inflammation-associated stimuli, the inducible receptor Slamf8 negatively regulates inflammatory responses.  相似文献   
93.
Soil flooding has been widely reported to affect large areas of the world. In this work, we investigated the effect of waterlogging on citrus carbon and nitrogen pools and partitioning. Influence on their uptake and translocation was also studied through 1?N and 13C labeling to provide insight into the physiological mechanisms underlying the responses. The data indicated that flooding severely reduced photosynthetic activity and affected growth and biomass partitioning. Total nitrogen content and concentration in the plant also progressively decreased throughout the course of the experiment. After 36 days of treatment, nitrogen content of flooded plants had decreased more than 2.3-fold compared to control seedlings, and reductions in nitrogen concentration ranged from 21 to 55% (in roots and leaves, respectively). Specific absorption rate and transport were also affected, leading to important changes in the distribution of this element inside the plant. Additionally, experiments involving labeled nitrogen revealed that 1?N uptake rate and accumulation were drastically decreased at the end of the experiment (93% and 54%, respectively). 13CO? assimilation into the plant was strongly reduced by flooding, with δ13C reductions ranging from 22 to 37% in leaves and roots, respectively. After 36 days, the relative distribution of absorbed 13C was also altered. Thus, 13C recovery in flooded leaves increased compared to controls, whereas roots exhibited the opposite pattern. Interestingly, when carbohydrate partitioning was examined, the data revealed that sucrose concentration was augmented significantly in roots (37-56%), whereas starch was reduced. In leaves, a marked increase in sucrose was detected from the first sampling onwards (36-66%), and the same patter was observed for starch. Taken together, these results indicate that flooding altered carbon and nitrogen pools and partitioning in citrus. On one hand, reduced nitrogen concentration appears to be a consequence of impaired uptake and transport. On the other hand, the observed changes in carbohydrate distribution suggest that translocation from leaves to roots was reduced, leading to significant starch accumulation in leaves and further decreases in roots.  相似文献   
94.
The biological pump describes the transport of particulate matter from the sea surface to the ocean’s interior including the seabed. The contribution by gelatinous zooplankton bodies as particulate organic matter (POM) vectors (“jelly-falls”) has been neglected owing to technical and spatiotemporal sampling limitations. Here, we assess the existing evidence on jelly-falls from early ocean observations to present times. The seasonality of jelly-falls indicates that they mostly occur after periods of strong upwelling and/or spring blooms in temperate/subpolar zones and during late spring/early summer. A conceptual model helps to define a jelly-fall based on empirical and field observations of biogeochemical and ecological processes. We then compile and discuss existing strategic and observational oceanographic techniques that could be implemented to further jelly-falls research. Seabed video- and photography-based studies deliver the best results, and the correct use of fishing techniques, such as trawling, could provide comprehensive regional datasets. We conclude by considering the possibility of increased gelatinous biomasses in the future ocean induced by upper ocean processes favouring their populations, thus increasing jelly-POM downward transport. We suggest that this could provide a “natural compensation” for predicted losses in pelagic POM with respect to fuelling benthic ecosystems.  相似文献   
95.
The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv) in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2-3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.  相似文献   
96.
The effect of para-fluorophenylalanine (PFP) on the production of trisomic plants of Agave tequilana Weber var. Azul produced through somatic embryogenesis was investigated. Normal diploid plants with 2n = 2x = 60 were obtained in the control treatment and with 4 mg L−1 PFP exposure, while use of 8 and 12 mg L−1 PFP led to production of trisomics with 2n = 2x = 61. Normal diploid plants showed a bimodal karyotype with five pairs of large chromosomes and 25 pairs of small chromosomes. Trisomic plants also had a bimodal karyotype with a group of three chromosomes in position five of the chromosome set. More than 13 homologous chromosome pairs exhibited structural changes. Differences in chromosome arm ratio (long arm/short arm) were also found in eight chromosome pairs; all these aberrations in the chromosome complement of trisomic plants were probably caused by inversions, deletions, and/or duplications produced by high concentrations of PFP. The gross chromosome structural changes and the presence of a single extra chromosome could have been induced by the effect of PFP on the mitotic spindle by inducing nondisjunction of sister chromatids, resulting in hyperploids (2n + x) and hypoploids (2nx). Flow cytometric analysis of nuclear DNA content was performed using nuclei isolated from young leaves of normal and trisomic plants. The 2C DNA content of 8.635 pg (1Cx = 4,223 Mbp of trisomic plants was different (p < 0.001) than that of normal plants (2C DNA = 8.389 pg (1Cx = 4,102 Mbp). The difference in genome size was correlated with the large structural changes in the trisomic plant genomes.  相似文献   
97.
98.
99.
100.
Land-use change is a major driver of the global biodiversity crisis, mainly via the fragmentation and loss of natural habitat. Although land-use changes will accelerate to meet humankind's growing demand for agricultural products, conservation planning rarely considers future land uses and how they may affect the connectivity of ecological networks. Here, we integrate land-use models with landscape fragmentation and connectivity analyses, to assess the effects of past and future land-use changes on the connectivity of protected area networks for a highly dynamic region in southeast Spain. Our results show a continued geographical polarisation of land use, with agricultural intensification and urban development in the coastal areas, and the abandonment of traditional land use in the mountains (e.g., 1100 km2 of natural vegetation are projected to be lost in coastal areas whereas 32 km2 of natural vegetation would recover in interior areas from 1991 to 2015). As a result, coastal protected areas will experience increasing isolation. The connectivity analyses reveal that the two protected area networks in place in the study area, the European “Natura 2000” and the Andalusian “RENPA” networks, include many landscape connectors. However, we identify two areas that currently lack protection but contain several important patches for maintaining the region's habitat connectivity: the northwestern and the southwestern slopes of the Sierra Cabrera and Bédar protected area. Our results highlight the importance of considering future land-use trajectories in conservation planning to maintain connectivity at the regional scale, and to improve the resilience of conservation networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号