首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2196篇
  免费   163篇
  2023年   6篇
  2022年   29篇
  2021年   28篇
  2020年   20篇
  2019年   42篇
  2018年   58篇
  2017年   40篇
  2016年   56篇
  2015年   92篇
  2014年   90篇
  2013年   153篇
  2012年   182篇
  2011年   188篇
  2010年   144篇
  2009年   116篇
  2008年   140篇
  2007年   108篇
  2006年   119篇
  2005年   101篇
  2004年   95篇
  2003年   79篇
  2002年   85篇
  2001年   33篇
  2000年   20篇
  1999年   32篇
  1998年   19篇
  1997年   24篇
  1996年   28篇
  1995年   13篇
  1994年   20篇
  1993年   17篇
  1992年   17篇
  1991年   17篇
  1990年   17篇
  1989年   8篇
  1988年   11篇
  1987年   12篇
  1986年   11篇
  1985年   13篇
  1984年   8篇
  1983年   7篇
  1982年   8篇
  1981年   7篇
  1980年   15篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1972年   3篇
  1971年   2篇
  1968年   2篇
排序方式: 共有2359条查询结果,搜索用时 15 毫秒
71.
The complete or partial loss of shattering ability occurred independently during the domestication of several crops. Therefore, the study of this trait can provide an understanding of the link between phenotypic and molecular convergent evolution. The genetic dissection of ‘pod shattering’ in Phaseolus vulgaris is achieved here using a population of introgression lines and next‐generation sequencing techniques. The ‘occurrence’ of the indehiscent phenotype (indehiscent versus dehiscent) depends on a major locus on chromosome 5. Furthermore, at least two additional genes are associated with the ‘level’ of shattering (number of shattering pods per plant: low versus high) and the ‘mode’ of shattering (non‐twisting versus twisting pods), with all of these loci contributing to the phenotype by epistatic interactions. Comparative mapping indicates that the major gene identified on common bean chromosome 5 corresponds to one of the four quantitative trait loci for pod shattering in Vigna unguiculata. None of the loci identified comprised genes that are homologs of the known shattering genes in Glycine max. Therefore, although convergent domestication can be determined by mutations at orthologous loci, this was only partially true for P. vulgaris and V. unguiculata, which are two phylogenetically closely related crop species, and this was not the case for the more distant P. vulgaris and G. max. Conversely, comparative mapping suggests that the convergent evolution of the indehiscent phenotype arose through mutations in different genes from the same underlying gene networks that are involved in secondary cell‐wall biosynthesis and lignin deposition patterning at the pod level.  相似文献   
72.
Species are characterized by physiological and behavioral plasticity, which is part of their response to environmental shifts. Nonetheless, the collective response of ecological communities to environmental shifts cannot be predicted from the simple sum of individual species responses, since co‐existing species are deeply entangled in interaction networks, such as food webs. For these reasons, the relation between environmental forcing and the structure of food webs is an open problem in ecology. To this respect, one of the main problems in community ecology is defining the role each species plays in shaping community structure, such as by promoting the subdivision of food webs in modules—that is, aggregates composed of species that more frequently interact—which are reported as community stabilizers. In this study, we investigated the relationship between species roles and network modularity under environmental shifts in a highly resolved food web, that is, a “weighted” ecological network reproducing carbon flows among marine planktonic species. Measuring network properties and estimating weighted modularity, we show that species have distinct roles, which differentially affect modularity and mediate structural modifications, such as modules reconfiguration, induced by environmental shifts. Specifically, short‐term environmental changes impact the abundance of planktonic primary producers; this affects their consumers’ behavior and cascades into the overall rearrangement of trophic links. Food web re‐adjustments are both direct, through the rewiring of trophic‐interaction networks, and indirect, with the reconfiguration of trophic cascades. Through such “systemic behavior,” that is, the way the food web acts as a whole, defined by the interactions among its parts, the planktonic food web undergoes a substantial rewiring while keeping almost the same global flow to upper trophic levels, and energetic hierarchy is maintained despite environmental shifts. This behavior suggests the potentially high resilience of plankton networks, such as food webs, to dramatic environmental changes, such as those provoked by global change.  相似文献   
73.
Despite the increasing number of published protein structures, and the fact that each protein's function relies on its three-dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new method is presented that relates critical residues for protein function with the most traversed residues in networks derived from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the prediction, thus reproducing a basic feature of the structure/function relationship of proteins.  相似文献   
74.
75.
76.
77.
78.
The most prevalent malignancy in the oral cavity is represented by oral squamous cell carcinoma, an aggressive disease mostly detected in low-income communities. This neoplasia is mostly diffused in older men particularly exposed to risk factors such as tobacco, alcohol, and a diet rich in fatty foods and poor in vegetables. In oral squamous cell carcinoma, a wide range of matrix-cleaving proteinases are involved in extracellular matrix remodeling of cancer microenvironment. In particular, matrix metalloproteinases (MMPs) represent the major and most investigated protagonists. Owing to their strong involvement in malignant pathologies, MMPs are considered the most promising new biomarkers in cancer diagnosis and prognosis. The interest in studying MMPs in oral cancer biology is also owing to their prominent role in epithelial-to-mesenchymal transition (EMT). EMT is an intricate process involving different complex pathways. EMT-related proteins are attractive diagnostic biomarkers that characterize the activation of biological events that promote cancer's aggressive expansion. Different antioncogenic natural compounds have been investigated to counteract oral carcinogenesis, with the scope of obtaining better clinical results and lower morbidity. In particular, we describe the role of different nutraceuticals used for the regulation of MMP-related invasion and proliferation of oral cancer cells.  相似文献   
79.
The repertoire of extratranslational functions of components of the protein synthesis apparatus is expanding to include control of key cell signaling networks. However, very little is known about noncanonical functions of members of the protein synthesis machinery in regulating cellular mechanics. We demonstrate that the eukaryotic initiation factor 6 (eIF6) modulates cellular mechanobiology. eIF6-depleted endothelial cells, under basal conditions, exhibit unchanged nascent protein synthesis, polysome profiles, and cytoskeleton protein expression, with minimal effects on ribosomal biogenesis. In contrast, using traction force and atomic force microscopy, we show that loss of eIF6 leads to reduced stiffness and force generation accompanied by cytoskeletal and focal adhesion defects. Mechanistically, we show that eIF6 is required for the correct spatial mechanoactivation of ERK1/2 via stabilization of an eIF6–RACK1–ERK1/2–FAK mechanocomplex, which is necessary for force-induced remodeling. These results reveal an extratranslational function for eIF6 and a novel paradigm for how mechanotransduction, the cellular cytoskeleton, and protein translation constituents are linked.  相似文献   
80.
The copper(II) complexes of two new diastereomeric ligands, N2-(R)- and N2-(S)-2′-hydroxypropyl-(S)-phenylalaninamide [(R, S)-1 and (S, S)-1], have been used as additives to the eluent in high-performance liquid chromatography (HPLC) reversed phase for the chiral separation of DNS-amino acids. The aim was that of comparing the separation process obtained by the chiral eluent with that obtained by an analogous bonded stationary phase containing (S)-phenylalaninamide, previously studied [CSP-(S)-Phe-NH2]. The affinity of the ternary complexes for the C18 column was determined by adsorption experiments in HPLC. It was shown that the two systems (chiral eluent, chiral stationary phase) work according to different mechanisms. Ternary complex formation in solution was studied by fluorescence spectroscopy. It was shown that chiral separation with the Cu(II) complexes added to the eluent was determined by the relative affinities of the ternary complexes for the column-stationary phase rather than by their stabilities in solution. With CSP-(S)-Phe-NH2 the separation is accounted for by the relative stabilities of the ternary complexes, which depends mainly on the “allowed” geometry of the complex and on the steric repulsion of the amino acid side chain with the spacer. © 1996 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号