首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1663篇
  免费   125篇
  2022年   19篇
  2021年   22篇
  2020年   15篇
  2019年   33篇
  2018年   39篇
  2017年   34篇
  2016年   44篇
  2015年   69篇
  2014年   76篇
  2013年   139篇
  2012年   151篇
  2011年   143篇
  2010年   86篇
  2009年   74篇
  2008年   110篇
  2007年   93篇
  2006年   88篇
  2005年   81篇
  2004年   79篇
  2003年   60篇
  2002年   66篇
  2001年   15篇
  2000年   12篇
  1999年   18篇
  1998年   12篇
  1997年   11篇
  1996年   19篇
  1995年   6篇
  1994年   18篇
  1993年   11篇
  1992年   9篇
  1991年   15篇
  1990年   9篇
  1989年   6篇
  1988年   4篇
  1987年   8篇
  1986年   7篇
  1985年   12篇
  1984年   5篇
  1982年   5篇
  1981年   6篇
  1980年   11篇
  1979年   7篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1971年   3篇
  1967年   4篇
排序方式: 共有1788条查询结果,搜索用时 15 毫秒
101.
Bile acids are cytoprotective in hepatocytes by activating phosphatidylinositol-3-kinase (PI3-K) and its downstream signal AKT. Our aim was to determine whether feeding taurocholate to CCl(4)-treated rats reduces cholangiocyte apoptosis and whether this cytoprotective effect is dependent on PI3-K. Cholangiocyte proliferation, secretion, and apoptosis were determined in cholangiocytes from bile duct ligation (BDL), CCl(4)-treated BDL rats, and CCl(4)-treated taurocholate-fed rats. In vitro, we tested whether CCl(4) induces apoptosis and whether loss of cholangiocyte proliferation and secretion is dependent on PI3-K. The CCl(4)-induced cholangiocyte apoptosis and loss of cholangiocyte proliferation and secretion were reduced in CCl(4)-treated rats fed taurocholate. CCl(4)-induced cholangiocyte apoptosis, loss of cholangiocytes secretion, and proliferation were prevented by preincubation with taurocholate. Taurocholate cytoprotective effects were ablated by wortmannin. Taurocholate prevented, in vitro, CCl(4)-induced decrease of phosphorylated AKT protein expression in cholangiocytes. The cytoprotective effects of taurocholate on CCl(4) effects on cholangiocyte proliferation and secretion were abolished by wortmannin. Taurocholate protects cholangiocytes from CCl(4)-induced apoptosis by a PI3-K-dependent mechanism. Bile acids are important in the prevention of drug-induced ductopenia in cholangiopathies.  相似文献   
102.
In order to characterize the ontogenetic profile of metabotropic glutamate (mGlu) receptors coupled to phospholipase D (PLD) we examined the effects of selected mGlu agents on PLD activity in immature and adult rat hippocampus. The group I mGlu receptor agonist 3,5-dihydroxyphenylglycine stimulated PLD in immature tissue, but reduced the PLD response evoked by the nonselective mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate [(1S,3R)-ACPD] in adult hippocampus. (2R,1S,2R,3S)-2-(2-Carboxy-3-phenylcyclopropyl)glycine (PCCG-13), a recently characterized selective antagonist of PLD-coupled mGlu receptors, displayed a much greater activity in reducing the PLD response to (1S,3R)-ACPD in adult than in neonate hippocampus. Our results lend support to the hypothesis that glutamatergic activation of PLD in the rat hippocampus is developmentally regulated.  相似文献   
103.
Shiga toxin 1 (Stx1) catalyses the removal of a unique and specific adenine from 28S RNA in ribosomes (RNA-N-glycosidase activity) and the release of multiple adenines from DNA (DNA glycosylase activity). Added adenine behaves as an uncompetitive inhibitor of the RNA-N-glycosidase reaction binding more tightly to the Stx1–ribosome complex than to the free enzyme. Several purine derivatives and analogues have now been assayed as inhibitors of Stx1. Most of the compounds showed only minor differences in the rank order of activity on the two enzymatic reactions catalysed by Stx1. The survey highlights the importance of the amino group in the 6-position of the pyrimidine ring of adenine. Shifting (2-aminopurine) or substituting (hypoxanthine, 6-mercaptopurine, 6-methylpurine) the group greatly decreases the inhibitory power. The presence of a second ring, besides the pyrimidine one, is strictly required. Substitution, by introducing an additional nitrogen, of the imidazole ring of adenine with triazole leads to loss of inhibitory power, while rearrangement of the nitrogen atoms of the ring from the imidazole to the pyrazole configuration greatly enhances the inhibitory power. Thus 4-aminopyrazolo[3,4-d]pyrimidine (4-APP), the isomer of adenine with the five-membered ring in the pyrazole configuration, is by far the most potent inhibitor of both enzymatic reactions catalysed by Stx1. This finding opens perspectives on therapeutic strategies to protect endothelial renal cells once endocytosis of Stx1 has occurred (haemolytic uraemic syndrome). In the RNA-N-glycosidase reaction 4-APP binds, as adenine, predominantly to the Stx1–ribosome complex (uncompetitive inhibition), while inhibition of the DNA glycosylase activity by both inhibitors is of the mixed type.  相似文献   
104.
Platelets represent a target of reactive oxygen species produced under oxidative stress conditions. Controversial data on the effect of these species on platelet functions have been reported so far. In this study we evaluated the effect of a wide range of H(2)O(2) concentrations on platelet adhesion to immobilized fibrinogen and on pp72(syk) and pp125(FAK) tyrosine phosphorylation. Our results demonstrate that: (1) H(2)O(2) does not affect the adhesion of unstimulated or apyrase-treated platelets to immobilized fibrinogen; (2) H(2)O(2) does not affect pp72(syk) phosphorylation induced by platelet adhesion to fibrinogen-coated dishes; (3) H(2)O(2) reduces, in a dose-dependent fashion, pp125(FAK) phosphorylation of fibrinogen-adherent platelets; (4) concentrations of H(2)O(2) near to physiological values (10-12 microM) are able to strengthen the subthreshold activation of pp125(FAK) induced by epinephrine in apyrase-treated platelets; (5) H(2)O(2) doses higher than 0.1 mM inhibit ADP-induced platelet aggregation and dense granule secretion. The ability of H(2)O(2) to modulate pp125(FAK) phosphorylation suggests a role of this molecule in physiological hemostasis as well as in thrombus generation.  相似文献   
105.
The inhibitory power of adenine and 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) on the RNA-N-glycosidase activity catalyzed by bacterial (Shiga toxin 1) and plant (ricin, gelonin, momordin, bryodin-R, PAP-S, luffin, trichosantin, saporin 6 and barley) RIPs has been compared. The behavior of the two inhibitors is largely variable. While Shiga toxin 1 is preferentially inhibited by 4-APP, plant RIPs are either preferentially inhibited by adenine, or equally inhibited by the two compounds or, finally, only slightly more by 4-APP. Sequence variabilities involved in these different behaviors are discussed. The experimental data clearly indicate that, in spite of the same mechanism of action, RIPs differ widely in the ability to fit small ring molecules in the active cleft. While the strong inhibitory power of 4-APP on Shiga toxin 1 opens perspectives of therapeutic interventions, the ineffectiveness of the compound on ricin precludes its use as a suitable antidote in poisoning.  相似文献   
106.
MCM proteins are molecular components of the DNA replication licensing system inXenopus.These proteins comprise a conserved family made up of six distinct members which have been found to associate in large protein complexes. We have used a combination of biochemical and cytological methods to study the association of soluble and chromatin-boundXenopusMCM proteins during the cell cycle. In interphase, soluble MCM proteins are found organized in a core salt-resistant subcomplex that includes MCM subunits which are known to have high affinity for histones. The interphasic complex is modified at mitosis and the subunit composition of the resulting mitotic subcomplexes is distinct, indicating that the stability of the MCM complex is under cell cycle control. Moreover, we provide evidence that the binding of MCM proteins to chromatin may occur in sequential steps involving the loading of distinct MCM subunits. Comparative analysis of the chromatin distribution of MCM2, 3, and 4 shows that the binding of MCM4 is distinct from that of MCM2 and 3. Altogether, these data suggest that licensing of chromatin by MCMs occurs in an ordered fashion involving discrete subcomplexes.  相似文献   
107.
The human cytomegalovirus (HCMV) gene products US2 and US11 dislocate major histocompatibility class I heavy chains from the ER and target them for proteasomal degradation in the cytosol. The dislocation reaction is inhibited by agents that affect intracellular redox potential and/or free thiol status, such as diamide and N-ethylmaleimide. Subcellular fractionation experiments indicate that this inhibition occurs at the stage of discharge from the ER into the cytosol. The T cell receptor α (TCR α) chain is also degraded by a similar set of reactions, yet in a manner independent of virally encoded gene products. Diamide and N-ethylmaleimide likewise inhibit the dislocation of the full-length TCR α chain from the ER, as well as a truncated, mutant version of TCR α chain that lacks cysteine residues. Cytosolic destruction of glycosylated, ER-resident type I membrane proteins, therefore, requires maintenance of a proper redox potential for the initial step of removal of the substrate from the ER environment.  相似文献   
108.
Hepcidin, a liver peptide hormone, is the central regulator of iron homeostasis. Hepcidin synthesis is modulated by iron stores, so that iron repletion increases its levels to prevent pathological overload, while iron deficiency strongly inhibits hepcidin to allow an increase in iron absorption from duodenal cells. The emerging pivotal role of hepcidin in iron homeostasis, along with its important links with basic pathways like inflammation, makes the availability of an accurate hepcidin assay as a potentially powerful investigative tool to improve our understanding as well as our diagnostic/prognostic capabilities in many human diseases. There has been a great interest worldwide in developing a reliable and widely applicable assay of the hormone in biological fluids. Being optimal for low-molecular-weight biomarkers, SELDI-TOF-MS has emerged as a valid tool for hepcidin assay. Here we review recent results obtained with this technique, as well as with other Mass Spectrometry-based and immunological methods.  相似文献   
109.
To identify the best biotypes, an extensive survey of Sicilian wild rosemary was carried out by collecting 57 samples from various sites, followed by taxonomic characterization from an agronomic perspective. All the biotypes collected were classified as Rosmarinus officinalis L. A cluster analysis based on the morphological characteristics of the plants allowed the division of the biotypes into seven main groups, although the characteristics examined were found to be highly similar and not area‐dependent. Moreover, all samples were analyzed for their phytochemical content, applying an extraction protocol to obtain the nonvolatile components and hydrodistillation to collect the essential oils for the volatile components. The extracts were characterized by LC‐UV‐DAD/ESI‐MS, and the essential oils by GC‐FID and GC/MS analyses. In the nonvolatile fractions, 18 components were identified, namely, 13 flavones, two organic acids, and three diterpenes. In the volatile fractions, a total of 82 components were found, with as predominant components α‐pinene and camphene among the monoterpene hydrocarbons and 1,8‐cineole, camphor, borneol, and verbenone among the oxygenated monoterpenes. Cluster analyses were carried out on both phytochemical profiles, allowing the separation of the rosemary samples into different chemical groups. Finally, the total phenol content and the antioxidant activity of the essential oils and extracts were determined with the FolinCiocalteu (FC) colorimetric assay, the UV radiation‐induced peroxidation in liposomal membranes (UV‐IP test), and the scavenging activity of the superoxide radical (O$\rm{{_{2}^{{^\cdot} -}}}$ ). The present study confirmed that the essential oils and organic extracts of the Sicilian rosemary samples analyzed showed a considerable antioxidant/free radical‐scavenging activity.  相似文献   
110.

Background

Non-steroidal anti-inflammatory agents (NSAIDs) are known to be associated with renal damage. No clear evidence exists regarding differential risk of chronic kidney disease (CKD), specifically, across various NSAIDs.

Aim

The aim of this population-based case-control study was to evaluate the association between use of individual NSAIDs and risk of CKD in a general population of Southern Italy.

Methods

A nested case-control study was carried out using the general practice Arianna database, identifying incident CKD patients as cases and matched controls from 2006 to 2011. The date of first CKD diagnosis was defined as the index date (ID). Conditional logistic regressions were performed to estimate the risk of CKD associated with NSAIDs by class and individual drugs as compared to non-use during different time windows (within one year, six or three months prior to ID), with the latter being defined as current users. Among current users, the effect of cumulative exposure to these drugs was evaluated.

Results

Overall, 1,989 CKD cases and 7,906 matched controls were identified. A statistically significant increase in the risk of CKD was found for current users of oxicams (adjusted OR: 1.68; 95% CI: 1.15-2.44) and concerning individual compounds, for ketorolac (adj. OR: 2.54; 95% CI: 1.45-4.44), meloxicam (adj. OR: 1.98; 95% CI: 1.01-3.87) and piroxicam (adj. OR: 1.95; 95% CI: 1.19-3.21).

Conclusions

The risk of CKD varies across individual NSAIDs. Increased risk has been found for ketorolac, which may precipitate subclinical CKD through acute renal damage, and long-term exposure to oxicams, especially meloxicam and piroxicam.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号