首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1634篇
  免费   115篇
  1749篇
  2023年   5篇
  2022年   18篇
  2021年   22篇
  2020年   15篇
  2019年   33篇
  2018年   40篇
  2017年   33篇
  2016年   44篇
  2015年   67篇
  2014年   73篇
  2013年   131篇
  2012年   150篇
  2011年   142篇
  2010年   81篇
  2009年   72篇
  2008年   110篇
  2007年   90篇
  2006年   92篇
  2005年   79篇
  2004年   71篇
  2003年   60篇
  2002年   64篇
  2001年   11篇
  2000年   13篇
  1999年   18篇
  1998年   12篇
  1997年   11篇
  1996年   19篇
  1995年   6篇
  1994年   20篇
  1993年   11篇
  1992年   15篇
  1991年   10篇
  1990年   10篇
  1989年   8篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   13篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   9篇
  1980年   9篇
  1979年   4篇
  1977年   3篇
  1974年   3篇
  1972年   7篇
  1970年   3篇
  1967年   2篇
排序方式: 共有1749条查询结果,搜索用时 15 毫秒
91.

Background

Evidence suggests that post-traumatic stress disorder (PTSD) is associated with substantially reduced subjective quality of life (SQOL). This study aimed to explore whether and how changes in the levels of PTSD symptom clusters of intrusion, avoidance and hyperarousal are associated with changes in SQOL.

Methods

Two samples with PTSD following the war in former Yugoslavia were studied, i.e. a representative sample of 530 people in five Balkan countries and a non-representative sample of 215 refugees in three Western European countries. They were assessed on average eight years after the war and re-interviewed one year later. PTSD symptoms were assessed on the Impact of Event Scale - Revised and SQOL on the Manchester Short Assessment of Quality of Life. Linear regression and a two-wave cross lagged panel analysis were used to explore the association between PTSD symptom clusters and SQOL.

Results

The findings in the two samples were consistent. Symptom reduction over time was associated with improved SQOL. In multivariable analyses adjusted for the influence of all three clusters, gender and time since war exposure, only changes in hyperarousal symptoms were significantly associated with changes in SQOL. The two-wave cross-lagged panel analysis suggested that the link between hyperarousal symptoms and SQOL is bidirectional.

Conclusions

Low SQOL of patients with war-related PTSD is particularly associated with hyperarousal symptoms. The findings suggest a bidirectional influence: a reduction in hyperarousal symptoms may result in improved SQOL, and improvements in SQOL may lead to reduced hyperarousal symptoms.  相似文献   
92.
Phosphorylation on tyrosine, threonine and serine residues represents one of the most important post-translational modifications and is a key regulator of cellular signaling of multiple biological processes that require a strict control by protein kinases and protein phosphatases. Abnormal protein phosphorylation has been associated with several human diseases including Alzheimer's disease (AD). One of the characteristic hallmarks of AD is the presence of neurofibrillary tangles, composed of microtubule-associated, abnormally hyperphosphorylated tau protein. However, several others proteins showed altered phosphorylation levels in AD suggesting that deregulated phosphorylation may contribute to AD pathogenesis. Phosphoproteomics has recently gained attention as a valuable approach to analyze protein phosphorylation, both in a quantitative and a qualitative way. We used the fluorescent phosphospecific Pro-Q Diamond dye to identify proteins that showed alterations in their overall phosphorylation in the hippocampus of AD vs. control (CTR) subjects. Significant changes were found for 17 proteins involved in crucial neuronal process such as energy metabolism or signal transduction. These phosphoproteome data may provide new clues to better understand molecular pathways that are deregulated in the pathogenesis and progression of AD.  相似文献   
93.
We measured activity in the dorsal system of the human cortex with magnetoencephalography (MEG) during a matching-to-sample plus cueing paradigm, where participants judged the occurrence of changes in either categorical or coordinate spatial relations (e.g., exchanges of left versus right positions or changes in the relative distances) between images of pairs of animals. The attention window was primed in each trial to be either small or large by using cues that immediately preceded the matching image. In this manner, we could assess the modulatory effects of the scope of attention on the activity of the dorsal system of the human cortex during spatial relations processing. The MEG measurements revealed that large spatial cues yielded greater activations and longer peak latencies in the right inferior parietal lobe for coordinate trials, whereas small cues yielded greater activations and longer peak latencies in the left inferior parietal lobe for categorical trials. The activity in the superior parietal lobe, middle frontal gyrus, and visual cortex, was also modulated by the size of the spatial cues and by the type of spatial relation change. The present results support the theory that the lateralization of each kind of spatial processing hinges on differences in the sizes of regions of space attended to by the two hemispheres. In addition, the present findings are inconsistent with the idea of a right-hemispheric dominance for all kinds of challenging spatial tasks, since response times and accuracy rates showed that the categorical spatial relation task was more difficult than the coordinate task and the cortical activations were overall greater in the left hemisphere than in the right hemisphere.  相似文献   
94.
An experimental rodent model was used to demonstrate the viability of the coccoid form of Helicobacter pylori. Concentrated suspensions were prepared for the two different morphologies: at 2 days incubation for the bacillary forms and at 20 days incubation for the “dormant” forms. The strains used for incubation were two fresh isolates from humans with duodenal ulceration, and two collection strains. Five hundred microliters of culture (OD550 = 5 Mc Farland) of Helicobacter pylori with bacillary (2-5×109 CFU/ml) and coccoid (0 CFU/ml) morphology were inoculated intragastrically in BALB/c mice. The gastric mucosa of the mice was colonized by Helicobacter pylori with the administration of fresh bacillary and coccoid cultures and not with the established cultures. Helicobacter pylori was isolated at 1 week after inoculation with the administration of fresh bacillary cultures, while fresh coccoid Helicobacter pylori was recovered in mice stomachs after 2 weeks of inoculation. After colonization, histopathologic changes occurred after 1 month from inoculation; all colonized mice showed a systemic antibody response to Helicobacter pylori. These results support the thesis of the viability of coccoid Helicobacter pylori non-culturable in vitro and confirm that concentrated bacterial suspensions are able to colonize and to produce gastric alterations in this suitable animal model.  相似文献   
95.
96.
Hypothalamic neurons expressing Agouti-related peptide (AgRP) are critical for initiating food intake, but druggable biochemical pathways that control this response remain elusive. Thus, genetic ablation of insulin or leptin signaling in AgRP neurons is predicted to reduce satiety but fails to do so. FoxO1 is a shared mediator of both pathways, and its inhibition is required to induce satiety. Accordingly, FoxO1 ablation in AgRP neurons of mice results in reduced food intake, leanness, improved glucose homeostasis, and increased sensitivity to insulin and leptin. Expression profiling of flow-sorted FoxO1-deficient AgRP neurons identifies G-protein-coupled receptor Gpr17 as a FoxO1 target whose expression is regulated by nutritional status. Intracerebroventricular injection of Gpr17 agonists induces food intake, whereas Gpr17 antagonist cangrelor curtails it. These effects are absent in Agrp-Foxo1 knockouts, suggesting that pharmacological modulation of this pathway has therapeutic potential to treat obesity.  相似文献   
97.
New generation vaccines are in demand to include only the key antigens sufficient to confer protective immunity among the plethora of pathogen molecules. In the last decade, large-scale genomics-based technologies have emerged. Among them, the Reverse Vaccinology approach was successfully applied to the development of an innovative vaccine against Neisseria meningitidis serogroup B, now available on the market with the commercial name BEXSERO® (Novartis Vaccines). The limiting step of such approaches is the number of antigens to be tested in in vivo models. Several laboratories have been trying to refine the original approach in order to get to the identification of the relevant antigens straight from the genome. Here we report a new bioinformatics tool that moves a first step in this direction. The tool has been developed by identifying structural/functional features recurring in known bacterial protective antigens, the so called “Protectome space,” and using such “protective signatures” for protective antigen discovery. In particular, we applied this new approach to Staphylococcus aureus and Group B Streptococcus and we show that not only already known protective antigens were re-discovered, but also two new protective antigens were identified.Although vaccines based on attenuated pathogens as pioneered by Luis Pasteur have been shown to be extremely effective, safety and technical reasons recommend that new generation vaccines include few selected pathogen components which, in combination with immunostimulatory molecules, can induce long lasting protective responses. Such approach implies that the key antigens sufficient to confer protective immunity are singled out among the plethora of pathogen molecules. As it turns out, the search for such protective antigens can be extremely complicated.Genomic technologies have opened the way to new strategies in vaccine antigen discovery (1, 2, 3). Among them, Reverse Vaccinology (RV)1 has proved to be highly effective, as demonstrated by the fact that a new Serogroup B Neisseria meningitidis (MenB) vaccine, incorporating antigens selected by RV, is now available to defeat meningococcal meningitis (4, 5). In essence, RV is based on the simple assumption that cloning all annotated proteins/genes and screening them against a robust and reliable surrogate-of-protection assay must lead to the identification of all protective antigens. Because most of the assays available for protective antigen selection involve animal immunization and challenge, the number of antigens to be tested represents a severe bottleneck of the entire process. For this reason, despite the fact that RV is a brute force, inclusive approach (“test-all-to-lose-nothing” type of approach) in their pioneered work of MenB vaccine discovery, Pizza and co-workers did not test the entire collection of MenB proteins but rather restricted their analysis to the ones predicted to be surface-localized. This was based on the evidence that for an anti-MenB vaccine to be protective bactericidal antibodies must be induced, a property that only surface-exposed antigens have. For the selection of surface antigens Pizza and co-workers mainly used PSORT and other available tools like MOTIFS and FINDPATTERNS to find proteins carrying localization-associated features such as transmembrane domains, leader peptides, and lipobox and outer membrane anchoring motifs. At the end, 570 proteins were selected and entered the still very labor intensive screening phase. Over the last few years, our laboratories have been trying to move to more selective strategies. Our ultimate goal, we like to refer to as the “Holy Grail of Vaccinology,” is to identify protective antigens by “simply” scanning the genome sequence of any given pathogen, thus avoiding time consuming “wet science” and “move straight from genome to the clinic” (6).With this objective in mind, we have developed a series of proteomics-based protocols that, in combination with bioinformatics tools, have substantially reduced the number of antigens to be tested in the surrogate-of-protection assays (7, 8). In particular, we have recently described a three-technology strategy that allows to narrow the number of antigens to be tested in the animal models down to less than ten (9). However, this strategy still requires high throughput experimental activities. Therefore, the availability of in silico tools that selectively and accurately single out relevant categories of antigens among the complexity of pathogen components would greatly facilitate the vaccine discovery process.In the present work, we describe a new bioinformatics approach that brings an additional contribution to our “from genome to clinic” goal. The approach has been developed on the basis of the assumption that protective antigens are protective in that they have specific structural/functional features (“protective signatures”) that distinguish them from immunologically irrelevant pathogen components. These features have been identified by using existing databases and prediction tools, such as PFam and SMART. Our approach focuses on protein biological role rather than its localization: it is completely protein localization unbiased, and lead to the identification of both surface-exposed and secreted antigens (which are the majority in extracellular bacteria) as well as cytoplasmic protective antigens (for instance, antigens that elicit interferon γ producing CD4+ T cells, thus potentiating the killing activity of phagocytic cells toward intracellular pathogens). Should these assumptions be valid, PS could be identified if: (1) all known protective antigens are compiled to create what we refer to as “the Protectome space,” and (2) Protectome is subjected to computer-assisted scrutiny using selected tools. Once signatures are identified, novel protective antigens of a pathogen of interest should be identifiable by scanning its genome sequence in search for proteins that carry one or more protective signatures. A similar attempt has been reported (10), where the discrimination of protective antigens versus nonprotective antigens was tried using statistical methods based on amino acid compositional analysis and auto cross-covariance. This model was implemented in a server for the prediction of vaccine candidates, that is, Vaxijen (www.darrenflower.info/Vaxijen); however, the selection criteria applied are still too general leading to a list of candidates that include ca. 30% of the total genome ORFs very similarly to the number of antigens predicted by classical RV based on the presence of localization signals.Here we show that Protectome analysis unravels specific signatures embedded in protective antigens, most of them related to the biological role/function of the proteins. These signatures narrow down the candidate list to ca. 3% of the total ORFs content and can be exploited for protective antigen discovery. Indeed, the strategy was validated by demonstrating that well characterized vaccine components could be identified by scanning the genome sequence of the corresponding pathogens for the presence of the PS. Furthermore, when the approach was applied to Staphylococcus aureus and Streptococcus agalactiae (Group B Streptococcus, GBS) not only already known protective antigens were rediscovered, but also two new protective antigens were identified.  相似文献   
98.
DNA extraction and storage methods have been evaluated with laboratory-reared leafhoppers and/or field-collected leafhoppers and psyllids. Detection of four different phytopathogenic phytoplasmas, belonging to three taxonomic groups, has been achieved by several direct or nested polymerase chain reaction (PCR) methods with such DNA extracts. Reactions differed in both the 16/23S ribosomal primer pairs used and the specific assay and cycling conditions. Merits and possible hindrances of the various primer pairs, in relation to insect DNA extracts, are discussed. However, identification of the phytoplasma(s) necessarily relied on comparison of the polymorphism in length of the amplified DNA fragments obtained by restriction with appropriate endonucleases. Endonuclease digestion is crucial for determining the identity (subgroup affiliation) of phytoplasmas of the same groups that can be carried by an individual vector.  相似文献   
99.
The kinin B, receptor has been implicated in a variety of pathological states; therefore, potent, selective, and specific antagonists with prolonged duration of action in vivo are needed. Using R-715 (AcLys[D-beta-Nal(7),Ile(8)] desArg9BK) as a template, new peptides containing alpha-MePhe in position 5, Oic in position 2, and AcOrn instead of AcLys at the N-terminal were prepared and tested for their antagonist potency, their selectivity, and their specificity for the kinin B1 receptor. In vitro metabolic stabilities toward aminopeptidase M (from human plasma), aminopeptidase P (from human platelets), and angiotensin-converting enzyme (purified from rabbit lung) were also investigated. The results of this study indicate that the three modifications applied separately are as well tolerated as they are when present conjointly in the template R-715. Indeed, pA2 values of R-715 (ranging from 8.40 to 8.5) do not differ significantly from the analogues R-954 and R-955 (both ranging from 8.4 to 8.6) when measured at kinin B1 receptors from rabbit aortas and human umbilical veins. Moreover, the chemical modifications utilized in the peptides R-954 and R-955 have provided resistance against aminopeptidases M and P, as well as the angiotensin-converting enzyme, unlike the early (e.g., Lys[Leu8]desArg9BK) and more recent (e.g., R-715, B-9858) generations of B, receptor antagonists. Ongoing in vivo assays will validate the assumption that the analogues R-954 and R-955 have a prolonged duration of action.  相似文献   
100.
Apple proliferation is a phytoplasma-associated disease transmitted by insects causing serious damage and economic losses to apple orchards. Investigations were carried out in 1999 and 2000 in northwestern Italy to identify the vector of apple proliferation and to study its population dynamics. Yellow sticky traps and beat tray samples revealed the presence of the psyllid Cacopsylla melanoneura (Forster) in eight apple orchards in the Aosta Valley. The species completes one generation per year; the overwintered psyllids colonized apple trees beginning in late January, whereas the springtime generation was observed beginning in early May. The offspring adults remained in apple orchards until the end of June, when they began to move onto other hosts. During 1999 and 2000, all apple trees present in the investigated orchards were visually checked to assess the fluctuation of disease symptoms. Polymerase chain reaction and restriction fragment-length polymorphism confirmed the presence of the apple proliferation phytoplasmas in both overwintering and offspring insects as well as in symptomatic apple plants. The ability of C. melanoneura to vector the disease was assessed by preliminary transmission trials. Overwintered psyllids, collected in the most affected orchards, caged on healthy apple test plants transmitted apple proliferation phytoplasmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号