首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   3篇
  国内免费   1篇
  60篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   8篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有60条查询结果,搜索用时 12 毫秒
31.
Using a new isolate of Pseudomonas aeruginosa, we obtained 7 g cell dry wt (CDW/l) using 5 % (w/v) glucose. Crude polyhydroxyalkanoates were obtained at 14.6 % of CDW. FTIR and NMR analysis confirmed that this was a new co-polymer: 3-hydroxyvalerate-co-5-hydroxydecenoate. Differential scanning calorimetry analysis showed two different melting temperatures of the copolymer and also indicated the glass transition temperature to be 4 °C. The polydispersity index of the polymer was 1.059.  相似文献   
32.

Introduction

Immediate responses towards emotional utterances in humans are determined by the acoustic structure and perceived relevance, i.e. salience, of the stimuli, and are controlled via a central feedback taking into account acoustic pre-experience. The present study explores whether the evaluation of stimulus salience in the acoustic communication of emotions is specifically human or has precursors in mammals. We created different pre-experiences by habituating bats (Megaderma lyra) to stimuli based on aggression, and response, calls from high or low intensity level agonistic interactions, respectively. Then we presented a test stimulus of opposite affect intensity of the same call type. We compared the modulation of response behaviour by affect intensity between the reciprocal experiments.

Results

For aggression call stimuli, the bats responded to the dishabituation stimuli independent of affect intensity, emphasising the attention-grabbing function of this call type. For response call stimuli, the bats responded to a high affect intensity test stimulus after experiencing stimuli of low affect intensity, but transferred habituation to a low affect intensity test stimulus after experiencing stimuli of high affect intensity. This transfer of habituation was not due to over-habituation as the bats responded to a frequency-shifted control stimulus. A direct comparison confirmed the asymmetric response behaviour in the reciprocal experiments.

Conclusions

Thus, the present study provides not only evidence for a discrimination of affect intensity, but also for an evaluation of stimulus salience, suggesting that basic assessment mechanisms involved in the perception of emotion are an ancestral trait in mammals.
  相似文献   
33.
34.
To investigate West Nile virus (WNV) circulation in rural populations in Gabon, we undertook a large serological survey focusing on human rural populations, using two different ELISA assays. A sample was considered positive when it reacted in both tests. A total of 2320 villagers from 115 villages were interviewed and sampled. Surprisingly, the WNV-specific IgG prevalence was high overall (27.2%) and varied according to the ecosystem: 23.7% in forested regions, 21.8% in savanna, and 64.9% in the lakes region. The WNV-specific IgG prevalence rate was 30% in males and 24.6% in females, and increased with age. Although serological cross-reactions between flaviviruses are likely and may be frequent, these findings strongly suggest that WNV is widespread in Gabon. The difference in WNV prevalence among ecosystems suggests preferential circulation in the lakes region. The linear increase with age suggests continuous exposure of Gabonese populations to WNV. Further investigations are needed to determine the WNV cycle and transmission patterns in Gabon.  相似文献   
35.
Ojah R  Dolui SK 《Bioresource technology》2006,97(13):1529-1535
Methyl methacrylate (MMA) was graft copolymerized onto Bombyx mori fibre (natural silk). The graft copolymerization was carried out by photopolymerization of MMA using semiconductor particles (CdS) as photocatalyst in the presence of visible light. The effect of additives like triethylamine (Et(3)N) and ethylene glycol on graft copolymerization was studied. We have achieved 2-10% graft conversion with 10-20% homopolymer formation. After removal of the homopolymer, the graft copolymer (grafted fibre) was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC). The chemical resistance of grafted fibre was compared with virgin one.  相似文献   
36.
Upon chronic UV treatment pavement cell expansion in Arabidopsis leaves is reduced, implying alterations in symplastic and apoplastic properties of the epidermal cells. In this study, the effect of UV radiation on microtubule patterning is analysed, as microtubules are thought to serve as guiding rails for the cellulose synthase complexes depositing cellulose microfibrils. Together with hemicelluloses, these microfibrils are regarded as the load-bearing components of the cell wall. Leaves of transgenic plants with fluorescently tagged microtubules (GFP-TUA6) were as responsive to UV as wild type plants. Despite the UV-induced reduction in cell elongation, confocal microscopy revealed that cellular microtubule arrangements were seemingly not affected by the UV treatments. This indicates an unaltered deposition of cellulose microfibrils in the presence of UV radiation. Therefore, we surmise that the reduction in cell expansion in UV-treated leaves is most probably due to changes in cell wall loosening and/or turgor pressure.Key words: arabidopsis, cell expansion, GFP-TUA6, leaf development, microtubule cytoskeleton, UV radiationPhotosynthetic functions such as solar light capture and carbon fixation are highly evolved features of plant leaves. To fulfil these functions in an optimal way, leaf development needs to be tuned to environmental conditions. Leaves are continuously exposed and subjected to environmental influences, which serve as co-regulators of leaf and plant development.1 This ability of plants to adapt, secures the plant''s survival, even under non-optimal conditions. An example of a regulatory environmental parameter is solar light, indispensable for photosynthesis but potentially causing photoinhibition and/or UV-radiation stress. The highly energetic ultraviolet B (UV-B) rays of short wavelengths (280–315 nm) can both cause damage, as well as induce a range of specific metabolic and morphogenic plant responses. It was reported before that exposure to low dose UV radiation reduces Arabidopsis leaf size due to a decreased cell size.2 Expansion of leaf epidermal cells of Arabidopsis thaliana is the combined action of promotion and restriction of growth, resulting in the typical irregular sinuous pavement cells. It has been postulated that cellulose microfibrils are responsible for generating a force opposing isotropic expansion by creating neck regions in between outgrowing lobes.3 As the microtubule cytoskeleton is believed to serve as guiding rails for the cellulose synthase complexes (CESAs),4 the deposition of the cellulose fibrils is intimately linked to the cortical microtubule arrangement. We have studied the UV-effect on microtubule organisation in leaf epidermal cells whose expansion had decreased upon this UV radiation. Microtubules in the adaxial pavement cells of the fourth leaf were monitored on several successive days in a transgenic line containing GFP fused to tubulin A6.5 The chronic UV treatment was started on day 0 when the plants were 2 weeks old, using UV exposure conditions as described in reference 2. First the responsiveness of the GFP-TUA6 plants to UV radiation was evaluated. Similar to wild type (WT) plants,2 the GFP-TUA6 plants had smaller leaves following 8 days of UV treatment (t-test, p < 0.01) (Fig. 1). This was caused by a significant reduction in the generalized cell area average of all measured cells, irrespective of the location within the leaf (Fig. 1; t-test, p < 0.01). In more detail, the average cell area within the base, middle and top zones of the GFP-TUA6 leaf was systematically lower in UV-treated leaves from 8 days after the treatment started onwards (data not shown).Open in a separate windowFigure 1Effect of UV radiation on leaf and cell area after different days of UV radiation. Open asterisks indicate a statistically significant difference in leaf area between UV-treated and control plants, black asterisks indicate statistically significant difference in cell area (t-test, *p < 0.05, **p < 0.01, ***p < 0.001). Error bars indicate the standard error for five different leaves at all measured time-points and 600, 170 and 180 cells at day 0, 8 and 12 respectively.As GFP-TUA6 leaves were as responsive to UV radiation as wild type leaves, confocal microscopy was used to visualize the organisation of the cortical microtubules facing the outer periclinal wall of the adaxial epidermis. No clear difference in microtubule (re)organization could be detected during the development of pavement cells, and throughout the UV treatment period. As shown in Figure 2 at day 2, pavement cells with comparable areas are similarly shaped in control and UV-irradiated plants and contain similar microtubule arrangements (Fig. 2 and marked cells). This means that microtubule organization is not directly affected by the UV exposure and that shape development proceeds in an analoguous manner as under control conditions. This lack of alteration in the microtubule arrangement can be observed for cells at the leaf tip, which were already in the process of lobe formation at the start of the exposure period, as well as for cells at the leaf base. Under our growth conditions, and in the monitored leaf number 4, cell proliferation still took place in this part of the leaf and lobes only started to appear on the cell surface. As microtubules are linked to the deposition of cellulose microfibrils, it can be assumed that no alterations in cellulose deposition occur upon UV treatment either. We can therefore conclude that the process of lobe formation and microtubule patterning is not impeded and that only the extent of cell expansion is restricted upon UV exposure.Open in a separate windowFigure 2Microtubule pattern in control and UV-exposed leaves visualized using GFP-TUA6 and confocal microscopy. Both images are from cells at the mid zone of the fourth leaf at day 2. Microtubules are similarly arranged in equally shaped and sized cells of control and UV-exposed leaves. The marked cells show a pattern whereby the tubules are centred in the neck regions between two outgrowing lobes.According to the Lockhart equation,6 cell (wall) growth is modulated by wall biomechanics and turgor pressure. Concerning turgor pressure, no clear differences in this factor between UV-exposed and control plants of Lactuca sativa L.7 and Pisum sativum8 could be observed, reinforcing the idea that especially the modulation of cell wall properties is the main factor causing the observed UV-induced reduction in cell expansion. Some reports indicate differential expression of wall loosening enzymes like expansins or xyloglucan endotransglycosylase/hydrolases (XTHs),9,10 or cell wall strengthening enzymes as particular peroxidases7 after UV exposure. Another key event could involve UV-mediated changes in the phenylpropanoid pathway, which may cause changes in the lignin biosynthesis. As shown by the literature1114 lignin may well be an important modulator of cell wall architecture in Arabidopsis and therefore alterations in lignin synthesis could form the basis for morphological modifications. Further research on the cell wall properties of UV-treated plants may resolve this uncertainty.As a general conclusion we can state that the patterning of microtubules is not altered, but that alterations in cell wall composition or arrangements are the most plausible candidates for the observed reduction in pavement cell expansion upon chronic UV treatment.  相似文献   
37.
38.
All the concentrations (25-150 mgl-1) of the phytohormones kinetin, IAA (indol-3-ylacetic acid) and GA3 (gibberellic acid) increased the activity of DCPIP (2,6 dichlorophenolindophenol)-Hill reaction, chlorophyll and protein contents over the control data in leaves ofSechium edule Sw. on Darjeeling hill of the Eastern Himalayas; while ethrel (2-chloroethylphosphonic acid) treatments decreased these parameters in the hilly species. The most effective concentrations in increasing these parameters were 50 mg 1-1 of kinetin, 50 mg 1-1 of IAA and 100 mg 1-1 of GA3; whereas 50 mg 1-1 of ethrel was most effective in decreasing these parameters during the induction of senescence in the hilly vegetable crop. The increase in these parameters was greatest with kinetin, followed by IAA and least with GA3 in the hilly plant species studied.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号