首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1596篇
  免费   95篇
  2023年   3篇
  2022年   17篇
  2021年   25篇
  2020年   21篇
  2019年   35篇
  2018年   37篇
  2017年   22篇
  2016年   38篇
  2015年   63篇
  2014年   78篇
  2013年   124篇
  2012年   131篇
  2011年   120篇
  2010年   66篇
  2009年   76篇
  2008年   72篇
  2007年   82篇
  2006年   78篇
  2005年   89篇
  2004年   88篇
  2003年   61篇
  2002年   65篇
  2001年   24篇
  2000年   25篇
  1999年   18篇
  1998年   20篇
  1997年   16篇
  1996年   19篇
  1995年   28篇
  1994年   15篇
  1993年   11篇
  1992年   7篇
  1991年   17篇
  1990年   11篇
  1989年   11篇
  1988年   14篇
  1986年   5篇
  1985年   7篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   6篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1974年   4篇
  1973年   3篇
  1968年   4篇
  1967年   4篇
排序方式: 共有1691条查询结果,搜索用时 0 毫秒
91.
A highly attractive approach to investigate the influence and hierarchical organization of viral proteins on cellular immune responses is to employ mutant viruses carrying deletions of various virus-encoded, immune-modulating genes. Here, we introduce a novel set of deletion mutants of the human CMV (HCMV) lacking the UL40 region either alone or on the background of a deletion mutant devoid of the entire US2-11 region. Deletion of UL40 had no significant effect on lysis of infected cells by NK cells, indicating that the expected enhancement of HLA-E expression by specific peptides derived from HCMV-encoded gpUL40 leader sequences was insufficient to confer target cell protection. Moreover, the kinetics of MHC class I down-regulation by US2-11 genes observed at early and late phases postinfection with wild-type virus correlated with increased susceptibility to NK lysis. Thus, the influence of HCMV genes on NK reactivity follows a hierarchy dominated by the US2-11 region, which encodes all viral genes capable of down-modulating expression of classical and non-classical MHC class I molecules. The insights gained from studies of such virus mutants may impact on future therapeutic strategies and vaccine development and incorporate NK cells in the line of defense mechanisms against HCMV infection.  相似文献   
92.
Parkin is a ubiquitin ligase that facilitates proteasomal protein degradation and is involved in a common autosomal recessive form of Parkinson's disease. Its expression is part of the unfolded protein response in cell lines where its overexpression protects against unfolded protein stress. How parkin expression is regulated in brain primary cells under stress situations is however, less well established. Here, the cellular and subcellular localization of parkin under basal conditions and during unfolded protein stress was investigated in primary cultures of rat astrocytes and hippocampal neurons. Immunofluorescense microscopy and biochemical analysis demonstrated that parkin is mainly associated with the endoplasmic reticulum (ER) in hippocampal neurons while it is associated with Golgi membranes, the nuclei and light vesicles in astrocytes. The constitutive parkin expression was high in neurons as compared with astrocytes. However, unfolded protein stress elicited a selective increase in astrocytic parkin expression and a change in distribution, whereas neuronal parkin remained largely unmodified. The cell specific differences argue in favour of different cellular binding sites and substrates for the protein and a pathogenic role for astrocytes in Parkinson's disease caused by parkin dysfunction.  相似文献   
93.
We studied the release of salbutamol and ketoprofen enantiomers from HPMC K100M matrices containing two types of cellulose derivatives: cellulose tris (3,5-dimethylphenylcarbamate) and cellulose tris (2,3-dichlorophenylcarbamate), chiral excipients used as stationary phases for liquid chromatography. These matrices provided an extended release of both drugs. Ketoprofen release from formulations elaborated with cellulose tris (2,3-dichlorophenylcarbamate) was by anomalous transport, because the value of n (release exponent of the diffusion equation) ranged between 0.60-0.68, whereas for all other formulations the value of exponent n ranged from 0.50-0.54. The drug thus diffuses through the matrix and is released following a quasi-Fickian diffusion mechanism (stereoselective process). The matrices preferentially retained R-salbutamol and S-ketoprofen and cellulose tris (3,5-dimethylphenylcarbamate) showed more capacity of chiral discrimination for both drugs than cellulose tris (2,3-dichlorophenylcarbamate). Moreover, we observed that stereoselectivity is dependent on the amount of chiral excipient in the formulation. Diffusion tests confirmed the chiral interaction between drugs and cellulose derivatives observed in the dissolution assays except for matrices elaborated with ketoprofen and cellulose tris (2,3-dichlorophenylcarbamate), where the low stereoselectivity observed with the matrices is due to the presence of HPMC K100M. We conclude that the inclusion of these cellulose derivatives in HPMC matrices does not result in a relevant stereoselectivity with respect to the two drugs studied.  相似文献   
94.
95.
Dihydrofolate reductase is a drug target that has not been thoroughly investigated in leishmania and trypanosomes. Work has previously shown that 5-benzyl-2,4-diaminopyrimidines are selective inhibitors of the leishmanial and trypanosome enzymes. Modelling predicted that alkyl/aryl substitution on the 6-position of the pyrimidine ring should increase enzyme activity of 5-benzyl-2,4-diaminopyrimidines as inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Various compounds were prepared and evaluated against both the recombinant enzymes and the intact organisms. The presence of a substituent had a small or negative effect on activity against the enzyme or intact parasites compared to unsubstituted compounds.  相似文献   
96.
OBJECTIVE: Although information on the cytogenetic characteristics of meningioma tumors has accumulated progressively over the past few decades, information on the genetic heterogeneity of meningiomas is still scanty. The aim of the present study was to analyze by interphase fluorescence in situ hybridization (FISH) the incidence of numerical abnormalities for chromosomes 1, 9, 10, 11, 14, 15, 17, 22, X, and Y in a group of 70 consecutive meningioma tumors. Another goal was to establish the potential associations among the altered chromosomes, as a way to assess both intertumoral and intratumoral heterogeneity. METHODS: For the purpose of the study, 70 patients diagnosed with meningioma were analyzed. Interphase FISH for the detection of numerical abnormalities for chromosomes 1, 9, 10, 11, 14, 15, 17, 22, X, and Y was applied to fresh tumor samples from each of the patients studied. RESULTS: The overall incidence of numerical abnormalities was 76%. Chromosome Y in males and chromosome 22 in the whole series were the most common abnormalities (46% and 61%, respectively). Despite the finding that monosomy of chromosome 22/22q(-) deletions are the most frequent individual abnormality (53%), we have observed that chromosome gains are significantly more common than chromosome losses (60% versus 40%). Chromosome gains corresponded to abnormalities of chromosomes 1 (27%), 9 (25%), 10 (23%), 11 (22%), 14 (33%), 15 (22%), 17 (23%), and X in females (35%) and males (23%) whereas chromosome losses apart from chromosome 22 frequently involved chromosomes 14 (19%), X in males (23%), and Y in males (32%). Although an association was found among most gained chromosomes on one side and chromosome losses on the other side, different association patterns were observed. Furthermore, in the latter group, monosomy 22/22q(-) was associated with monosomy X in females and monosomy 14/14q(-) was associated with nulisomy Y in males. In addition, chromosome losses usually involved a large proportion of the tumor cells whereas chromosome gains were restricted to small tumor cell clones, including tetraploid cells. CONCLUSIONS: Our results show that meningiomas are genetically heterogeneous tumors that display different patterns of numerical chromosome changes, as assessed by interphase FISH.  相似文献   
97.
Gene transfer to the penile corpora cavernosa of constructs of the inducible and endothelial nitric oxide synthase (NOS) cDNAs ameliorates erectile dysfunction in aged rats. In this study, we investigated whether the neuronal NOS (nNOS) variant responsible for erection, penile nNOS (PnNOS), can exert a similar effect, and whether the combination of electroporation with a helper-dependent adenovirus (AdV) improves gene transfer. PnNOS and beta-galactosidase cDNAs were cloned in plasmid (pCMV-PnNOS; pCMV-beta-gal) and "gutless" AdV (AdV-CMV-PnNOS; AdV-CMV-beta-gal) vectors, and injected into the penis of adult (beta-gal) or aged (PnNOS) rats, with or without electroporation. Penile erection was measured at different times after PnNOS cDNA injection, by electrical field stimulation of the cavernosal nerve. The expression of beta-galactosidase or PnNOS was estimated in penile tissue by either histochemistry and luminometry or Western blot, and the effects of AdV-CMV-PnNOS on mRNA expression were examined by a DNA microarray. We found that electroporation increased pCMV-beta-gal uptake, and its expression was detectable at 56 days. In the aged rats treated with pCMV-PnNOS and electroporation, the maximal intracavernosal:mean arterial pressure ratios were elevated for 11 and 18 days when compared with those in controls. Electroporation intensified penile uptake of as few as 10(6) viral particles (vp) of AdV-CMV-beta-gal, and with 10(7) vp beta-galactosidase was still detectable at 60 days. Electroporated AdV-CMV-PnNOS (10(7) vp) was effective at 18 days in stimulating the erection of aged rats, without inducing the expression of cytotoxic genes. In conclusion, intracavernosal gene therapy with PnNOS cDNA corrected the aging-related erectile dysfunction for at least 18 days when given by electroporation in a helper-dependent AdV at low viral loads.  相似文献   
98.
99.
Caveolin-1 is the principal structural component of caveolae microdomains, which represent a subcompartment of the plasma membrane. Several independent lines of evidence support the notion that caveolin-1 functions as a suppressor of cell transformation. For example, the human CAV-1 gene maps to a suspected tumor suppressor locus (D7S522/7q31.1) that is frequently deleted in a number of carcinomas, including breast cancers. In addition, up to 16% of human breast cancers harbor a dominant-negative mutation, P132L, in the CAV-1 gene. Despite these genetic associations, the tumor suppressor role of caveolin-1 still remains controversial. To directly assess the in vivo transformation suppressor activity of the caveolin-1 gene, we interbred Cav-1 (-/-) null mice with tumor-prone transgenic mice (MMTV-PyMT) that normally develop multifocal dysplastic lesions throughout the entire mammary tree. Herein, we show that loss of caveolin-1 gene expression dramatically accelerates the development of these multifocal dysplastic mammary lesions. At 3 wk of age, loss of caveolin-1 resulted in an approximately twofold increase in the number of lesions (foci per gland; 3.3 +/- 1.0 vs. 7.0 +/- 1.2) and an approximately five- to sixfold increase in the total area occupied by these lesions. Similar results were obtained at 4 wk of age. However, complete loss of caveolin-1 was required to accelerate the appearance of these dysplastic mammary lesions, because Cav-1 (+/-) heterozygous mice did not show any increases in foci development. We also show that loss of caveolin-1 increases the extent and the histological grade of these mammary lesions and facilitates the development of papillary projections in the mammary ducts. Finally, we demonstrate that cyclin D1 expression levels are dramatically elevated in Cav-1 (-/-) null mammary lesions, consistent with the accelerated appearance and growth of these dysplastic foci. This is the first in vivo demonstration that caveolin-1 can function as a transformation suppressor gene.  相似文献   
100.
We generated replacement sets for three highly conserved residues, Pro196, Pro197 and His199, that flank the catalytic nucleophile, Cys198. Pro196 and Pro197 have restricted mobility that could be important for the structural transitions known to be essential for activity. To test this hypothesis we obtained and characterized 13 amino acid substitutions for Pro196, 14 for Pro197 and 14 for His199. All of the Pro196 and Pro197 variants, except P197R, and four of the His199 variants complemented TS-deficient Escherichia coli cells, indicating they had at least 1% of wild-type activity. For all His199 mutations, k(cat)/K(m) for substrate and cofactor decreased more than 40-fold, suggesting that the conserved hydrogen bond network co-ordinated by His199 is important for catalysis. Pro196 can be substituted with small hydrophilic residues with little loss in k(cat), but 15- to 23-fold increases in K(m)(dUMP). Small hydrophobic substitutions for Pro197 were most active, and the most conservative mutant, P197A, had only a 5-fold lower k(cat)/K(m)(dUMP) than wild-type TS. Several Pro196 and Pro197 variants were temperature sensitive. The small effects of Pro196 or Pro197 mutations on enzyme kinetics suggest that the conformational restrictions encoded by the Pro-Pro sequence are largely maintained when either member of the pair is mutated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号