首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   3篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1978年   1篇
  1977年   1篇
  1974年   3篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
31.
Phosphate and oxoglutarate carriers transport phosphate and oxoglutarate across the inner membranes of mitochondria in exchange for OH and malate, respectively. Both carriers belong to the mitochondrial carrier protein family, characterized by a tripartite structure made up of related sequences about 100 amino acids in length. The results obtained on the topology of the phosphate and oxoglutarate carriers are consistent with the six -helix model proposed by Saraste and Walker. In both carriers the N- and C-terminal regions are exposed toward the cytosol. In addition, the oxoglutarate carrier has been shown to be a dimer by means of cross-linking studies. The bovine and human genes coding for the oxoglutarate carrier are split into eight and six exons, respectively, and five introns are found in the same position in both genes. The bovine and human phosphate carrier genes have the same organization with nine exons separated by eight introns at exactly the same positions. The phosphate carrier of mammalian mitochondria is synthesized with a cleavable presequence, in contrast to the oxoglutarate carrier and the other members of the mitochondrial carrier family. The precursor of the phosphate carrier is efficiently imported, proteolytically processed, and correctly assembled in isolated mitochondria. The presequence-deficient phosphate carrier is imported with an efficiency of about 50% as compared with the precursor of the phosphate carrier and is correctly assembled, demonstrating that the mature portion of the phosphate carrier contains sufficient information for import and assembly into mitochondria.  相似文献   
32.
We have isolated and characterized a full length cDNA clone encoding the precursor of the human heart mitochondrial phosphate carrier protein. The entire clone is 1330 bp in length with 5'- and 3'-untranslated regions of 48 and 184 bp, respectively. The open reading frame encodes the mature protein consisting of 312 amino acids, preceded by a presequence of 49 amino acids. The amino acid sequence of the mature human phosphate carrier is 93.6, 94.2 and 33.6% identical to that of the phosphate carrier from beef, rat and yeast, respectively. Like other mitochondrial transport proteins, the human phosphate carrier has a tripartite structure. Each of the three repeats contains two hydrophobic regions which presumably span the membrane in the form of alpha-helices.  相似文献   
33.
Thrombin has been shown to cause in vitro bone resorption and to stimulate osteoblastic cell proliferation, phosphoinositide turnover and cytosolic calcium levels. In the present study, the role of the active site of thrombin in its action on osteoblastic cells was investigated. Either hirudin or (4-amidinophenyl)methanesulfonyl fluoride inhibited, in a dose-dependent manner, the effects of thrombin on human osteoblast-like osteosarcoma cells (G292 and Saos-2 cell lines) and on normal rat calvarial osteoblastic cells. Thrombin-induced stimulation of cell proliferation, cytosolic calcium increases, and stimulation of phosphoinositide metabolism were concomitantly, and to a proportionally similar extent, inhibited. The inhibitors, when present in the absence of thrombin, did not affect the basal levels of cell functions. Both zeta-thrombin and gamma-thrombin, forms resulting from proteolytic cleavage of alpha-thrombin, were capable of stimulating the osteoblastic cells. These data indicate that thrombin's actions on osteoblast-like cells are dependent on the availability of its catalytic site.  相似文献   
34.
Using an Escherichia coli-Streptomyces shuttle vector derived from a bacterial artificial chromosome (BAC), we developed methodologies for the construction of BAC libraries of filamentous actinomycetes. Libraries of Streptomyces coelicolor, the model actinomycete, and Planobispora rosea, a genetically intractable strain, were constructed. Both libraries have an average insert size of 60 kb, with maximal insert larger than 150 kb. The S. coelicolor library was evaluated by selected hybridisations to DraI fragments and by end sequencing of a few clones. Hybridisation of the P. rosea library to selected probes indicates a good representation of the P. rosea genome and that the library can be used to facilitate the genomic analysis of this actinomycete.  相似文献   
35.
In Saccharomyces cerevisiae, the genes ODC1 and ODC2 encode isoforms of the oxodicarboxylate carrier. They both transport C5-C7 oxodicarboxylates across the inner membranes of mitochondria and are members of the family of mitochondrial carrier proteins. Orthologs are encoded in the genomes of Caenorhabditis elegans and Drosophila melanogaster, and a human expressed sequence tag (EST) encodes part of a closely related protein. Information from the EST has been used to complete the human cDNA sequence. This sequence has been used to map the gene to chromosome 14q11.2 and to show that the gene is expressed in all tissues that were examined. The human protein was produced by overexpression in Escherichia coli, purified, and reconstituted into phospholipid vesicles. It has similar transport characteristics to the yeast oxodicarboxylate carrier proteins (ODCs). Both the human and yeast ODCs catalyzed the transport of the oxodicarboxylates 2-oxoadipate and 2-oxoglutarate by a counter-exchange mechanism. Adipate, glutarate, and to a lesser extent, pimelate, 2-oxopimelate, 2-aminoadipate, oxaloacetate, and citrate were also transported by the human ODC. The main differences between the human and yeast ODCs are that 2-aminoadipate is transported by the former but not by the latter, whereas malate is transported by the yeast ODCs but not by the human ortholog. In mammals, 2-oxoadipate is a common intermediate in the catabolism of lysine, tryptophan, and hydroxylysine. It is transported from the cytoplasm into mitochondria where it is converted into acetyl-CoA. Defects in human ODC are likely to be a cause of 2-oxoadipate acidemia, an inborn error of metabolism of lysine, tryptophan, and hydroxylysine.  相似文献   
36.
Here, we show that a 2:1 mixture of Brutieridin and Melitidin, termed “BMF”, has a statin-like properties, which blocks the action of the rate-limiting enzyme for mevalonate biosynthesis, namely HMGR (3-hydroxy-3-methylglutaryl-CoA-reductase). Moreover, our results indicate that BMF functionally inhibits several key characteristics of CSCs. More specifically, BMF effectively i) reduced ALDH activity, ii) blocked mammosphere formation and iii) inhibited the activation of CSC-associated signalling pathways (STAT1/3, Notch and Wnt/beta-catenin) targeting Rho-GDI-signalling. In addition, BMF metabolically inhibited mitochondrial respiration (OXPHOS) and fatty acid oxidation (FAO). Importantly, BMF did not show the same toxic side-effects in normal fibroblasts that were observed with statins. Lastly, we show that high expression of the mRNA species encoding HMGR is associated with poor clinical outcome in breast cancer patients, providing a potential companion diagnostic for BMF-directed personalized therapy.  相似文献   
37.
38.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号