首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   4篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   2篇
  2015年   10篇
  2014年   7篇
  2013年   14篇
  2012年   12篇
  2011年   12篇
  2010年   12篇
  2009年   10篇
  2008年   9篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   4篇
  2003年   6篇
  2002年   7篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1994年   2篇
  1990年   1篇
  1988年   2篇
  1980年   1篇
  1969年   1篇
排序方式: 共有169条查询结果,搜索用时 187 毫秒
81.
The high occurrence of cardiac disease in the Western world has driven clinicians and cardiovascular biologists to look for alternative strategies to treat patients. A challenging approach is the use of stem cells to repair the heart, in itself an inspiring thought. In the past 10 years, stem cells from different sources have been under intense investigation and, as a result, a multitude of studies have been published on the identification, isolation, and characterization, of cardiovascular progenitor cells and repair in different animal models. However, relatively few cardiovascular progenitor populations have been identified in human hearts, including, but not limited to, cardiosphere-derived cells, cKit+ human cardiac stem cells , Isl1+ cardiovascular progenitors, and, in our lab, cardiomyocyte progenitor cells (CMPCs). Here, we aim to provide a comprehensive summary of the past findings and present challenges for future therapeutic potential of CMPCs.  相似文献   
82.
83.

Background  

Pairing of homologous chromosomes at meiosis is an important requirement for recombination and balanced chromosome segregation among the products of meiotic division. Recombination is initiated by double strand breaks (DSBs) made by Spo11 followed by interaction of DSB sites with a homologous chromosome. This interaction requires the strand exchange proteins Rad51 and Dmc1 that bind to single stranded regions created by resection of ends at the site of DSBs and promote interactions with uncut DNA on the homologous partner. Recombination is also considered to be dependent on factors that stabilize interactions between homologous chromosomes. In budding yeast Hop2 and Mnd1 act as a complex to promote homologous pairing and recombination in conjunction with Rad51 and Dmc1.  相似文献   
84.
85.
86.
Proteins are involved in virtually every cellular function, they control regulatory mechanisms and are modified in diseases (either cause or effect). To understand the function and adaptation of a cell, the researcher has to be able to identify proteins and visualise the concentrations and form in which the proteins are expressed. The technique is called ''proteomics'' or ''proteome analysis''. In this article proteomics will be explained from starting material to detection and analysis of the individual proteins. It will give an indication of the work involved and how it can be implemented in cardiovascular research.  相似文献   
87.
88.

Background and objectives

Periprosthetic aortic regurgitation (PPR) after transcatheter aortic valve implantation (TAVI) remains an important issue associated with impaired long-term outcomes. The current randomised study aims to evaluate potential differences between the balloon-expandable Edwards SAPIEN-3 and the self-expanding Medtronic CoreValve system with the main focus on post-TAVI PPR by means of novel imaging endpoints, and an additional focus on other clinical endpoints.

Endpoints

The primary endpoint of this study is quantitative assessment of the severity of post-procedural PPR using cardiac magnetic resonance imaging. Several other novel imaging modalities (X-ray contrast angiography, echocardiography) are used as secondary imaging modalities for the assessment of PPR following TAVI. Secondary objectives of the study include clinical outcomes such as cerebral and kidney injury related to TAVI, and quality of life.

Methods and design

The ELECT study is a single-centre, prospective, two-armed randomised controlled trial. For the purpose of this study, 108 consecutive adult patients suitable for transfemoral TAVI will be randomly allocated to receive the SAPIEN-3 (n = 54) or the CoreValve system (n = 54).

Discussion

The ELECT trial is the first randomised controlled trial to quantitatively compare the extent of post-TAVI PPR between the SAPIEN-3 and CoreValve. Furthermore, it will evaluate potential differences between the two prostheses with regard to mid-term clinical outcome and quality of life.
  相似文献   
89.
Background. In recent years, resident cardiac progenitor cells have been identified in, and isolated from the rodent heart. These cells show the potential to form cardiomyocytes, smooth muscle cells, and endothelial cells in vitro and in vivo and could potentially be used as a source for cardiac repair. However, previously described cardiac progenitor cell populations show immature development and need co-culture with neonatal rat cardiomyocytes in order to differentiate in vitro. Here we describe the localisation, isolation, characterisation, and differentiation of cardiomyocyte progenitor cells (CMPCs) isolated from the human heart. Methods. hCMPCs were identified in human hearts based on Sca-1 expression. These cells were isolated, and FACS, RT-PCR and immunocytochemistry were used to determine their baseline characteristics. Cardiomyogenic differentiation was induced by stimulation with 5-azacytidine. Results. hCMPCs were localised within the atria, atrioventricular region, and epicardial layer of the foetal and adult human heart. In vitro, hCMPCs could be induced to differentiate into cardiomyocytes and formed spontaneously beating aggregates, without the need for co-culture with neonatal cardiomyocytes. Conclusion. The human heart harbours a pool of resident cardiomyocyte progenitor cells, which can be expanded and differentiated in vitro. These cells may provide a suitable source for cardiac regeneration cell therapy. (Neth Heart J 2008;16: 163-9.)  相似文献   
90.
Background A growing number of patients with end-stage heart failure undergo implantation of ventricular assist devices as a bridge to heart transplantation. Objectives In this study we investigated whether functional and haemodynamic recovery after implantation is sufficient to warrant the use of them as long-term alternative to heart transplantation. Methods We compared peak VO2 of a group of patients three months after implantation of a ventricular assist device and three months after heart transplantation. Furthermore, we analysed the degree of haemodynamic recovery, by comparing plasma levels of BNP and creatinine before and after implantation of the device. Results After implantation of a ventricular assist device, exercise capacity improved considerably; three months after implantation peak VO2 was 20.0±4.9 ml/kg/min (52% of predicted for age and gender). After heart transplantation exercise capacity improved even further; 24.0±3.9 ml/ kg/min (62% of predicted for age and gender) (p<0.001). In the three months after implantation, BNP plasma levels decreased from 570±307 pmol/l to 31±25 pmol/l and creatinine levels decreased from 191±82 μmol/l to 82±25 μmol/l, indicating significant unloading of the ventricles and haemodynamic recovery. Conclusion With regard to functional and haemodynamic recovery, the effect of implantation of a ventricular assist device is sufficient to justify its use as an alternative to heart transplantation. (Neth Heart J 2008;16:41-6.)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号